

BIRMINGHAM—MUMBAI

Nills Franssens

Shivakumar Gopalakrishnan

Gunther Lenz

Use Azure Kubernetes Service to automate

management, scaling, and deployment of

containerized applications.

Hands-on Kubernetes
on Azure, Third Edition

Hands-on Kubernetes on Azure, Third Edition

Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author(s), nor Packt
Publishing or its dealers and distributors, will be held liable for any damages caused
or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Authors: Nills Franssens, Shivakumar Gopalakrishnan, and Gunther Lenz

Technical Reviewers: Richard Hooper and Swaminathan Vetri

Managing Editor: Aditya Datar and Siddhant Jain

Acquisitions Editor: Ben Renow-Clarke

Production Editor: Deepak Chavan

Editorial Board: Vishal Bodwani, Ben Renow-Clarke, Arijit Sarkar, and Lucy Wan

First Published:March 2019

Second Published:May 2020

Third Published: April 2021

Production Reference: 3230421

ISBN: 978-1-80107-994-5

Published by Packt Publishing Ltd.

Livery Place, 35 Livery Street

Birmingham, B3 2PB, UK.

To mama and papa. This book would not have been possible without everything you
did for me. I love you both.

To Kelly. I wouldn’t be the person I am today without you.

- Nills Franssens

Find out what you can do with a fully managed
service for simplifying Kubernetes deployment,
management and operations, including:
• Build microservices applications.
• Deploy a Kubernetes cluster.
• Easily monitor and manage Kubernetes.

Create a free account and get started with
Kubernetes on Azure. Azure Kubernetes Service
(AKS) is one of more than 25 products that are
always free with your account. Start free >

Then, try these labs to master the basic and
advanced tasks required to deploy a multi-
container application to Kubernetes on Azure
Kubernetes Service (AKS). Try now >

Get started

Kubernetes
on Azure

Start free >

Try now >

Table of Contents

Preface i

Foreword 1

Section 1:The Basics 5

Chapter 1: Introduction to containers and Kubernetes 7

The software evolution that brought us here .. 9

Microservices ... 9
Advantages of running microservices .. 10
Disadvantages of running microservices ... 11
DevOps ... 12
Fundamentals of containers .. 14
Container images .. 16

Kubernetes as a container orchestration platform 20

Pods in Kubernetes ... 21
Deployments in Kubernetes .. 22
Services in Kubernetes ... 23
Azure Kubernetes Service .. 23

Summary ... 25

Chapter 2: Getting started with Azure Kubernetes Service 27

Diferent ways to create an AKS cluster ... 28

Getting started with the Azure portal ... 29

Creating your rst AKS cluster .. 29
A quick overview of your cluster in the Azure portal 36
Accessing your cluster using Azure Cloud Shell .. 40
Deploying and inspecting your rst demo application 43
Deploying the demo application ... 44

Summary ... 52

Section 2: Deploying on AKS 53

Chapter 3: Application deployment on AKS 55

Deploying the sample guestbook application step by step 57

Introducing the application ... 57
Deploying the Redis master ... 58
Examining the deployment .. 62
Redis master with a CongMap .. 64

Complete deployment o the sample guestbook application 71

Exposing the Redis master service ... 72
Deploying the Redis replicas .. 75
Deploying and exposing the front end ... 77
The guestbook application in action .. 84

Installing complex Kubernetes applications using Helm 85

Installing WordPress using Helm .. 86

Summary ... 94

Chapter 4: Building scalable applications 95

Scaling your application .. 96

Manually scaling your application .. 97
Scaling the guestbook front-end component .. 100
Using the HPA .. 102

Scaling your cluster ... 107

Manually scaling your cluster .. 107
Scaling your cluster using the cluster autoscaler ... 109

Upgrading your application .. 112

Upgrading by changing YAML les .. 113
Upgrading an application using kubectl edit ... 118
Upgrading an application using kubectl patch .. 119
Upgrading applications using Helm .. 122

Summary ... 126

Chapter 5: Handling common failures in AKS 127

Handling node failures .. 128

Solving out-of-resource failures ... 135

Fixing storage mount issues ... 139

Starting the WordPress installation .. 140
Using persistent volumes to avoid data loss ... 142

Summary ... 153

Chapter 6: Securing your application with HTTPS 155

Setting up Azure Application Gateway as a Kubernetes ingress 156

Creating a new application gateway ... 157
Setting up the AGIC ... 160
Adding an ingress rule for the guestbook application 161

Adding TLS to an ingress ... 165

Installing cert-manager .. 166
Installing the certicate issuer .. 168
Creating the TLS certicate and securing the ingress 169

Summary ... 176

Chapter 7: Monitoring the AKS cluster and
the application 177

Commands for monitoring applications ... 178

The kubectl get command ... 179
The kubectl describe command .. 181
Debugging applications .. 186

Readiness and liveness probes .. 196

Building two web containers ... 197
Experimenting with liveness and readiness probes 201

Metrics reported by Kubernetes .. 205

Node status and consumption .. 205
Pod consumption .. 207

Using AKS Diagnostics ... 210

Azure Monitor metrics and logs ... 213

AKS Insights ... 213

Summary ... 226

Section 3: Securing your AKS cluster and workloads 227

Chapter 8: Role-based access control in AKS 229

RBAC in Kubernetes explained ... 230

Enabling Azure AD integration in your AKS cluster 232

Creating a user and group in Azure AD ... 235

Conguring RBAC in AKS ... 240

Verifying RBAC for a user .. 245

Summary ... 250

Chapter 9: Azure Active Directory pod-managed
identities in AKS 251

An overview of Azure AD pod-managed identities 253

Setting up a new cluster with Azure AD pod-managed identities 256

Linking an identity to your cluster ... 258

Using a pod with managed identity ... 262

Summary ... 271

Chapter 10: Storing secrets in AKS 273

Diferent secret types in Kubernetes .. 274

Creating secrets in Kubernetes .. 275

Creating Secrets rom les ... 275
Creating secrets manually using YAML les .. 279
Creating generic secrets using literals in kubectl ... 281

Using your secrets ... 282

Secrets as environment variables ... 283
Secrets as les ... 285

Installing the Azure Key Vault provider for Secrets Store CSI driver 289

Creating a managed identity ... 291
Creating a key vault .. 294
Installing the CSI driver for Key Vault ... 300

Using the Azure Key Vault provider or Secrets Store CSI driver 301

Mounting a Key Vault secret as a le .. 301
Using a Key Vault secret as an environment variable 305

Summary ... 310

Chapter 11: Network security in AKS 311

Networking and network security in AKS ... 312

Control plane networking .. 312
Workload networking ... 315

Control plane network security ... 317

Securing the control plane using authorized IP ranges 317
Securing the control plane using a private cluster ... 321

Workload network security .. 330

Securing the workload network using an internal load balancer 330
Securing the workload network using network security groups 336
Securing the workload network using network policies 343

Summary ... 352

Section 4: Integrating with Azure managed services 353

Chapter 12: Connecting an application to an
Azure database 355

Azure Service Operator ... 356

What is ASO? .. 357

Installing ASO on your cluster .. 359

Creating a new AKS cluster .. 359
Creating a managed identity ... 361
Creating a key vault .. 367
Setting up ASO on your cluster ... 370

Deploying Azure Database for MySQL using ASO 373

Creating an application using the MySQL database 380

Summary ... 387

Chapter 13: Azure Security Center for Kubernetes 389

Setting up Azure Security Center for Kubernetes 391

Deploying ofending workloads ... 396

Analyzing conguration using Azure Secure Score 403

Neutralizing threats using Azure Defender .. 415

Summary ... 428

Chapter 14: Serverless functions 429

Various functions platforms ... 431

Setting up the prerequisites ... 433

Azure Container Registry ... 433
Creating a VM .. 436

Creating an HTTP-triggered Azure function ... 442

Creating a queue-triggered function ... 447

Creating a queue ... 448
Creating a queue-triggered function .. 451
Scale testing functions ... 458

Summary ... 461

Chapter 15: Continuous integration and continuous
deployment for AKS 463

CI/CD process for containers and Kubernetes ... 464

Setting up Azure and GitHub .. 466

Setting up a CI pipeline ... 473

Setting up a CD pipeline .. 485

Summary ... 494

Final thoughts .. 495

Index 497

>
Preface

About

This section briey introduces the authors and reviewers, the coverage o this book,
the technical skills you'll need to get started, and the hardware and sotware needed to
complete all o the topics.

ii | Preace

Hands-on Kubernetes on Azure – Third Edition

Containers and Kubernetes containers facilitate cloud deployments and application
development by enabling efcient versioning with improved security and
portability.

With updated chapters on role-based access control, pod identity, storing secrets,
and network security in AKS, this third edition begins by introducing you to
containers, Kubernetes, and Azure Kubernetes Service (AKS), and guides you
through deploying an AKS cluster in dierent ways. You will then delve into the
specifcs o Kubernetes by deploying a sample guestbook application on AKS
and installing complex Kubernetes apps using Helm. With the help o real-world
examples, you'll also get to grips with scaling your applications and clusters.

As you advance, you'll learn how to overcome common challenges in AKS and
secure your applications with HTTPS. You will also learn how to secure your
clusters and applications in a dedicated section on security. In the fnal section,
you'll learn about advanced integrations, which give you the ability to create Azure
databases and run serverless unctions on AKS as well as the ability to integrate
AKS with a continuous integration and continuous delivery pipeline using GitHub
Actions.

By the end o this Kubernetes book, you will be profcient in deploying
containerized workloads on Microsot Azure with minimal management overhead.

About the authors

Nills Franssens is a technology enthusiast and a specialist in multiple open-source
technologies. He has been working with public cloud technologies since 2013.

In his current position as a Principal Cloud Solutions Architect at Microsot, he
works with Microsot's strategic customers on their cloud adoption. He has worked
with multiple customers in migrating applications to run on Kubernetes on Azure.
Nills' areas o expertise are Kubernetes, networking, and storage in Azure.

When he's not working, you can fnd Nills playing board games with his wie Kelly
and riends, or running one o the many trails in San Jose, Caliornia.

Hands-on Kubernetes on Azure – Third Edition | iii

Shivakumar Gopalakrishnan is DevOps architect at Varian Medical Systems. He
has introduced Docker, Kubernetes, and other cloud-native tools to Varian product
development to enable "Everything as Code".

He has years o sotware development experience in a wide variety o felds,
including networking, storage, medical imaging, and currently, DevOps. He has
worked to develop scalable storage appliances specifcally tuned or medical
imaging needs and has helped architect cloud-native solutions or delivering
modular AngularJS applications backed by microservices. He has spoken at multiple
events on incorporating AI and machine learning in DevOps to enable a culture o
learning in large enterprises.

He has helped teams in highly regulated large medical enterprises adopt modern
agile/DevOps methodologies, including the "You build it, you run it" model. He
has defned and leads the implementation o a DevOps roadmap that transorms
traditional teams to teams that seamlessly adopt security- and quality-frst
approaches using CI/CD tools. He holds a bachelor o engineering degree rom
College o Engineering, Guindy, and a master o science degree rom University o
Maryland, College Park.

Gunther Lenz is senior director o the technology ofce at Varian. He is an
innovative sotware R&D leader, architect, MBA, published author, public speaker,
and strategic technology visionary with more than 20 years o experience.

He has a proven track record o successully leading large, innovative, and
transormational sotware development and DevOps teams o more than 50 people,
with a ocus on continuous improvement. He has defned and lead distributed
teams throughout the entire sotware product liecycle by leveraging ground-
breaking processes, tools, and technologies such as the cloud, DevOps, lean/agile,
microservices architecture, digital transormation, sotware platorms, AI, and
distributed machine learning.

He was awarded Microsot Most Valuable Proessional or Sotware Architecture
(2005-2008). Gunther has published two books, .NET – A Complete Development
Cycle and Practical Sotware Factories in .NET.

iv | Preace

About the reviewers

Richard Hooper also known as PixelRobots online lives in Newcastle, England, he
is a Microsot MVP or Azure and a Microsot Certifed Trainer (MCT) who works
as an Azure architect at a company called Intercept based in the Netherlands. He
has more than 15 years o proessional experience in the IT industry. He has worked
with Microsot technologies all o his career but also has dabbled with Linux. He
is very enthusiastic about Azure and Azure Kubernetes Service (AKS) and has
been using them daily. In his spare time, he enjoys sharing knowledge and helping
people. He does this by blogging, podcasts, videos, and whatever technology
is at hand to share his passion, hoping it will help someone to progress in their
Azure journey. Richard has a passion or blogging and learning, which leads him
to discover new things every week. When the opportunity arose to be a technical
reviewer or a book about AKS, he jumped at the chance! Find him on Twitter at @
pixel_robots.

Swaminathan Vetri (Swami) works as an Architect at Maersk Technology Center
Bangalore building cloud native applications on Azure using various Azure PaaS
oerings and Kubernetes. He has also been recognised as a Microsot MVP -
Developer Technologies since 2016 or his technical contributions to the developer
community. In addition to writing technical blogs, he can oten be seen speaking
at local developer conerences, user group meets, meetups etc., on various topics
ranging rom .NET, C#, Docker, Kubernetes, Azure DevOps, GitHub Actions
to name a ew. A continuous learner who is passionate about sharing his little
knowledge to the community. You can ollow him on Twitter and GitHub at @
svswaminathan.

Hands-on Kubernetes on Azure – Third Edition | v

Learning objectives

• Plan, confgure, and run containerized applications in production.

• Use Docker to build applications in containers and deploy them on
Kubernetes.

• Monitor the AKS cluster and the application.

• Monitor your inrastructure and applications in Kubernetes using Azure
Monitor.

• Secure your cluster and applications using azure-native security tools.

• Connect an app to the Azure database.

• Store your container images securely with Azure Container Registry.

• Install complex Kubernetes applications using Helm.

• Integrate Kubernetes with multiple Azure PaaS services, such as databases,
Azure Security Center, and Functions.

• Use GitHub Actions to perorm continuous integration and continuous
delivery to your cluster.

Audience

This book is designed to beneft aspiring DevOps proessionals, system
administrators, developers, and site reliability engineers who are interested in
learning how containers and Kubernetes can beneft them. I you're new to working
with containers and orchestration, you'll fnd this book useul.

Approach

The book ocuses on a well-balanced combination o practical experience and
theoretical knowledge, accompanied by engaging real-world scenarios that have
a direct correlation to how proessionals work on the Kubernetes platorm. Each
chapter has been explicitly designed to enable you to apply what you learn in a
practical context with maximum impact.

vi | Preace

Hardware and software requirements

Hardware requirements

For the optimal lab experience, we recommend the ollowing hardware
confguration:

• Processor: Intel Core i5 or equivalent

• Memory: 4GB RAM (8 GB preerred)

• Storage: 35 GB available space

Software requirements

We also recommend that you have the ollowing sotware confguration in advance:

• A computer with a Linux, Windows 10, or macOS operating system

• An internet connection and web browser so you can connect to Azure

Conventions

Code words in the text, database names, older names, flenames, and fle
extensions are shown as ollows.

The front-end-service-internal.yaml fle contains the confguration
to create a Kubernetes service using an Azure internal load balancer. The
ollowing code is part o that example:

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: frontend
5 annotations:
6 service.beta.kubernetes.io/azure-load-balancer-internal:
"true"
7 labels:
8 app: guestbook
9 tier: frontend
10 spec:

Hands-on Kubernetes on Azure – Third Edition | vii

11 type: LoadBalancer
12 ports:
13 - port: 80
14 selector:
15 app: guestbook
16 tier: frontend

Downloading resources

The code bundle or this book is available at https://github.com/PacktPublishing/
Hands-on-Kubernetes-on-Azure-Third-Edition.

We also have other code bundles rom our rich catalog o books and videos
available at https://github.com/PacktPublishing/. Check them out!

Foreword

Welcome! By picking up this book, you've shown that you are interested in two
things: Azure and Kubernetes, which are both near and dear to my heart. I'm
excited that you are joining us on our cloud-native journey. Whether you are
new to Azure, new to Kubernetes, or new to both, I'm condent that as you
explore Azure Kubernetes Service (AKS), you will nd new ways to transorm your
applications, delight your customers, meet the growing needs o your business, or
simply learn new skills that will help you achieve your career goals. Regardless o
your reasons or starting this journey, we are eager to help you along the way and
see what you can build with Kubernetes and Azure.

The journey o Kubernetes on Azure itsel has been an exciting one. Over the last
ew years, AKS has been the astest-growing service in the history o Azure. We
nd ourselves at the infection point o both hyperscale growth in Azure itsel, as
well as hockey stick growth in applications running on Kubernetes. Combine the
two together, and this has made or an exciting (and busy) ew years.

2 | Foreword

It has been thrilling to see the success that we have been able to deliver or our
customers and users. But what is it about Azure and Kubernetes that have enabled
customer success? Though it may seem like magic at times, the truth is that there
is nothing about either Azure or Kubernetes that is truly magic. The value, success,
and transormation that our customers are seeing is related to their needs and how
this technology helps make these goals achievable.

We've seen over the past decade, and especially in the last year, that the ability
to be agile and adapting as the world changes is a critical capability or all o
us. Kubernetes enables this agility by introducing concepts such as containers
and container images, as well as higher-level concepts such as services and
deployments, which naturally push us toward architectures that are decoupled
microservices. Although, o course, you can build microservice applications without
Kubernetes, the natural tendency o the APIs and design patterns is to push you
toward these architectures. Microservices are the gravity well o Kubernetes, so
to speak. However, it's important to note that microservices are not the only way
to run applications on Kubernetes. Many o our customers nd great benets in
bringing their legacy applications to Kubernetes and mixing the management o
existing applications with the development o new cloud-native implementations.

As more and more people have started to conduct more and more o their lives
online, the criticality o all o the services we have built has radically changed.
It's no longer acceptable to have maintenance hours or scheduled downtime. We
live in a 24x7 world where applications need to available at all times, even as we
build, change, and rearrange them. Here, too, Kubernetes and Azure provide
the tools that you need to build reliable applications. Kubernetes has health
checks that automatically restart your application i it crashes, inrastructure
or zero-downtime rollouts, and autoscaling technology that enables you to
automatically grow to sustain a customer's load. On top o these capabilities, Azure
provides the inrastructure to perorm upgrades to Kubernetes itsel without
aecting applications running in the cluster, and autoscaling o the cluster itsel to
provide additional capacity to meet the demands o growing applications and the
elasticity to right-size your cluster to the most ecient shape possible.

| 3

In addition to these core capabilities, using AKS provides access to broader cloud-
native ecosystems. There are countless engineers and projects in the Cloud Native
Compute Foundation (CNCF) ecosystem that can help you build your applications
more quickly and reliably. As a leader and a contributor to many o these projects,
Azure provides integration and supports access to some o the best open-source
sotware that the world has to oer, including Helm, Gatekeeper, Flux, and more.

But the truth is that building any application on Kubernetes involves much more
than just the Kubernetes bits. Microsot has a unique set o tools that integrate
with AKS to provide a seamless, end-to-end experience. Starting with GitHub,
where the world comes togeher to develop and collaborate, through to Visual
Studio Code, where people build the sotware itsel, and to tools such as Azure
Monitor and Azure Security Center to keep your applications healthy and secure,
it is truly the combined capabilities o Azure that makes AKS a antastic place or
your applications to thrive. When you combine that with Azure's cloud-leading
ootprint around the world, which delivers more managed Kubernetes deployments
in more locations than anyone else, you can see that AKS enables businesses to
rapidly scale and grow to meet their needs rom the initial startup phase through
to the global enterprise level.

Thank you or choosing Azure and Kubernetes! I'm excited that you're here and I
hope you enjoy learning about everything Kubernetes and Azure has to oer.

– Brendan Burns
Co-founder of Kubernetes and Corporate Vice President at Microsoft

Section 1:
The Basics

In Section 1 of this book, we will cover the basic concepts that you need to
understand in order to follow the examples in this book.

We will start this section by explaining the basics of these underlying concepts,
such as containers and Kubernetes. Then, we will explain how to create a
Kubernetes cluster on Azure and deploy an example application.

By the time you have fnished this section, you will have a oundational knowledge
of containers and Kubernetes and will have a Kubernetes cluster up and running in
Azure that will allow you to follow the examples in this book.

This section contains the following chapters:

• Chapter 1, Introduction to containers and Kubernetes

• Chapter 2, Getting started with Azure Kubernetes Service

1
Introduction to
containers and

Kubernetes
Kubernetes has become the leading standard in container orchestration. Since
its inception in 2014, Kubernetes has gained tremendous popularity. It has been
adopted by start-ups as well as major enterprises, with all major public cloud
vendors offering a managed Kubernetes service.

Kubernetes builds upon the success of the Docker container revolution. Docker
is both a company and the name of a technology. Docker as a technology is the
most common way of creating and running software containers, called Docker
containers. A container is a way of packaging software that makes it easy to run
that software on any platform, ranging from your laptop to a server in a datacenter
to a cluster running in the public cloud.

Although the core technology is open source, the Docker company focuses on
reducing complexity for developers through a number of commercial offerings.

8 | Introduction to containers and Kubernetes

Kubernetes takes containers to the next level. Kubernetes is a container
orchestrator. A container orchestrator is a software platform that makes it easy to
run many thousands of containers on top of thousands of machines. It automates
a lot of the manual tasks required to deploy, run, and scale applications. The
orchestrator takes care of scheduling the right container to run on the right
machine. It also takes care of health monitoring and failover, as well as scaling your
deployed application.

The container technology Docker uses and Kubernetes are both open-source
software projects. Open-source software allows developers from many companies
to collaborate on a single piece of software. Kubernetes itself has contributors from
companies such as Microsoft, Google, Red Hat, VMware, and many others.

The three major public cloud platforms—Azure, Amazon Web Services (AWS),
and Google Cloud Platform (GCP)—all offer a managed Kubernetes service. They
attract a lot of interest in the market since the virtually unlimited compute power
and the ease of use of these managed services make it easy to build and deploy
large-scale applications.

Azure Kubernetes Service (AKS) is Azure's managed service for Kubernetes. It
reduces the complexity of building and managing Kubernetes clusters. In this book,
you will learn how to use AKS to run your applications. Each chapter will introduce
new concepts, which you will apply through the many examples in this book.

As a user, however, it is still very useful to understand the technologies that
underpin AKS. We will explore these foundations in this chapter. You will learn
about Linux processes and how they are related to Docker and containers. You will
see how various processes t nicely into containers and how containers t nicely
into Kubernetes.

This chapter introduces fundamental Docker concepts so that you can begin
your Kubernetes journey. This chapter also briefy introduces the basics that will
help you build containers, implement clusters, perform container orchestration,
and troubleshoot applications on AKS. Having cursory knowledge of what's in
this chapter will demystify much of the work needed to build your authenticated,
encrypted, and highly scalable applications on AKS. Over the next few chapters,
you will gradually build scalable and secure applications.

The sotware evolution that brought us here | 9

The following topics will be covered in this chapter:

• The software evolution that brought us here

• The fundamentals of containers

• The fundamentals of Kubernetes

• The fundamentals of AKS

The aim of this chapter is to introduce the essentials rather than to provide a
thorough information source describing Docker and Kubernetes. To begin with,
we'll rst take a look at how sotware has evolved to get us to where we are now.

The software evolution that brought us here

There are two major software development evolutions that enabled the popularity
of containers and Kubernetes. One is the adoption of a microservices architectural
style. Microservices allow an application to be built from a collection of small
services that each serve a specic unction. The other evolution that enabled
containers and Kubernetes is DevOps. DevOps is a set of cultural practices that
allows people, processes, and tools to build and release software faster, more
frequently, and more reliably.

Although you can use both containers and Kubernetes without using either
microservices or DevOps, the technologies are most widely adopted for deploying
microservices using DevOps methodologies.

In this section, we'll discuss both evolutions, starting with microservices.

Microservices

Software development has drastically evolved over time. Initially, software was
developed and run on a single system, typically a mainframe. A client could connect
to the mainframe through a terminal, and only through that terminal. This changed
when computer networks became common when the client-server programming
model emerged. A client could connect remotely to a server and even run part of
the application on their own system while connecting to the server to retrieve the
data the application required.

10 | Introduction to containers and Kubernetes

The client-server programming model has evolved toward distributed systems.
Distributed systems are different from the traditional client-server model as they
have multiple different applications running on multiple different systems, all
interconnected.

Nowadays, a microservices architecture is common when developing distributed
systems. A microservices-based application consists of a group of services that
work together to form the application, while the individual services themselves can
be built, tested, deployed, and scaled independently of each other. The style has
many benets but also has several disadvantages.

A key part of a microservices architecture is the fact that each individual service
serves one and only one core function. Each service serves a single-bound business
function. Different services work together to form the complete application. Those
services work together over network communication, commonly using HTTP REST
APIs or gRPC:

Figure 1.1: A standard microservices architecture

This architectural approach is commonly adopted by applications that run using
containers and Kubernetes. Containers are used as the packaging format for the
individual services, while Kubernetes is the orchestrator that deploys and manages
the different services running together.

Beore we dive into container and Kubernetes specics, let's rst explore the
benets and downsides o adopting microservices.

Advantages of running microservices

There are several advantages to running a microservices-based application. The
rst is the act that each service is independent o the other services. The services
are designed to be small enough (hence micro) to handle the needs of a business
domain. As they are small, they can be made self-contained and independently
testable, and so are independently releasable.

The sotware evolution that brought us here | 11

This leads to the benet that each microservice is independently scalable as
well. If a certain part of the application is getting more demand, that part of the
application can be scaled independently from the rest of the application.

The fact that services are independently scalable also means that they are
independently deployable. There are multiple deployment strategies when it comes to
microservices. Themost popular are rolling deployments and blue/green deployments.

With a rolling upgrade, a new version of the service is deployed only to a part of the
application. This new version is careully monitored and gradually gets more trac
if the service remains healthy. If something goes wrong, the previous version is still
running, and trac can easily be cut over.

With a blue/green deployment, you deploy the new version of the service in
isolation. Once the new version of the service is deployed and tested, you cut over
100% o the production trac to the new version. This allows or a clean transition
between service versions.

Another benet o the microservices architecture is that each service can be
written in a different programming language. This is described as polyglot—the
ability to understand and use multiple languages. For example, the front-end
service can be developed in a popular JavaScript framework, the back end can
be developed in C#, and the machine learning algorithm can be developed in
Python. This allows you to select the right language for the right service and allows
developers to use the languages they are most familiar with.

Disadvantages of running microservices

There's a fip side to every coin, and the same is true or microservices. While there
are multiple advantages to a microservices-based architecture, this architecture
has its downsides as well.

Microservices designs and architectures require a high degree of software
development maturity in order to be implemented correctly. Architects who
understand the domain very well must ensure that each service is bounded and
that different services are cohesive. Since services are independent of each other
and versioned independently, the software contract between these different
services is important to get right.

12 | Introduction to containers and Kubernetes

Another common issue with a microservices design is the added complexity when
it comes to monitoring and troubleshooting such an application. Since different
services make up a single application, and those different services run on multiple
servers, both logging and tracing such an application is a complicated endeavor.

Linked to the disadvantages mentioned before is that, typically, in microservices,
you need to build more fault tolerance into your application. Due to the dynamic
nature of the different services in an application, faults are more likely to happen.
In order to guarantee application availability, it is important to build fault tolerance
into the different microservices that make up an application. Implementing
patterns such as retry logic or circuit breakers is critical to avoid a single fault
causing application downtime.

In this section, you learned about microservices, their benets, and their
disadvantages. Often linked to microservices, but a separate topic, is the DevOps
movement. We will explore what DevOps means in the next section.

DevOps

DevOps literally means the combination of development and operations. More
specically, DevOps is the union o people, processes, and tools to deliver sotware
faster, more frequently, and more reliably. DevOps is more about a set of cultural
practices than about any specic tools or implementations. Typically, DevOps
spans four areas of software development: planning, developing, releasing, and
operating software.

Note

Many denitions o DevOps exist. The authors have adopted this denition,
but you as a reader are encouraged to explore diferent denitions in the
literature around DevOps.

The sotware evolution that brought us here | 13

The DevOps culture starts with planning. In the planning phase of a DevOps
project, the goals of a project are outlined. These goals are outlined both at a high
level (called an epic) and at a lower level (as features and tasks). The different work
items in a DevOps project are captured in the feature backlog. Typically, DevOps
teams use an agile planning methodology working in programming sprints. Kanban
boards are often used to represent project status and to track work. As a task
changes status from to do to doing to done, it moves from left to right on a Kanban
board.

When work is planned, actual development can be done. Development in a
DevOps culture isn't only about writing code but also about testing, reviewing,
and integrating code with team members. A version control system such as
Git is used for different team members to share code with each other. An
automated continuous integration (CI) tool is used to automate most manual tasks
such as testing and building code.

When a feature is code-complete, tested, and built, it is ready to be delivered. The
next phase in a DevOps project can start delivery. A continuous delivery (CD) tool
is used to automate the deployment of software. Typically, software is deployed
to different environments, such as testing, quality assurance, and production.
A combination of automated and manual gates is used to ensure quality before
moving to the next environment.

Finally, when a piece of software is running in production, the operations phase
can start. This phase involves the maintaining, monitoring, and supporting of an
application in production. The end goal is to operate an application reliably with
as little downtime as possible. Any issues are to be identied as proactively as
possible. Bugs in the software will be tracked in the backlog.

The DevOps process is an iterative process. A single team is never in a single phase
of the process. The whole team is continuously planning, developing, delivering,
and operating software.

14 | Introduction to containers and Kubernetes

Multiple tools exist to implement DevOps practices. There are point solutions for a
single phase, such as Jira for planning or Jenkins for CI and CD, as well as complete
DevOps platforms, such as GitLab. Microsoft operates two solutions that enable
customers to adopt DevOps practices: Azure DevOps and GitHub. Azure DevOps
is a suite of services to support all phases of the DevOps process. GitHub is a
separate platform that enables DevOps software development. GitHub is known as
the leading open-source software development platform, hosting over 40 million
open-source projects.

Both microservices and DevOps are commonly used in combination with
containers and Kubernetes. Now that we've had this introduction to microservices
and DevOps, we'll continue this rst chapter with the undamentals o containers
and then the fundamentals of Kubernetes.

Fundamentals of containers

A form of container technology has existed in the Linux kernel since the 1970s. The
technology powering today's containers, called cgroups (abbreviated from control
groups), was introduced into the Linux kernel in 2006 by Google. The Docker
company popularized the technology in 2013 by introducing an easy developer
workfow. Although the name Docker can reer to both the company as well as the
technology, most commonly, though, we use Docker to refer to the technology.

Note

Although the Docker technology is a popular way to build and run containers,
it is not the only way to build and run them. Many alternatives exist or either
building or running containers. One o those alternatives is containerd, which
is a container runtime also used by Kubernetes.

Docker as a technology is both a packaging format and a container runtime.
Packaging is a process that allows an application to be packaged together with
its dependencies, such as binaries and runtime. The runtime points at the actual
process of running the container images.

The sotware evolution that brought us here | 15

There are three important pieces in Docker's architecture: the client, the daemon,
and the registry:

• The Docker client is a client-side tool that you use to interact with the
Docker daemon, running locally or remotely.

• The Docker daemon is a long-running process that is responsible for
building container images and running containers. The Docker daemon can
run on either your local machine or a remote machine.

• A Docker registry is a place to store Docker images. There are public
registries such as Docker Hub that contain public images, and there are
private registries such as Azure Container Registry (ACR) that you can use
to store your own private images. The Docker daemon can pull images from
a registry if images are not available locally:

Figure 1.2: Fundamentals of Docker architecture

16 | Introduction to containers and Kubernetes

You can experiment with Docker by creating a free Docker account at Docker
Hub (https://hub.docker.com/) and using that login to open Docker Labs
(https://labs.play-with-docker.com/). This will give you access to an environment
with Docker pre-installed that is valid for 4 hours. We will be using Docker Labs in
this section as we build our own container and image.

Note

Although we are using the browser-based Docker Labs in this chapter to
introduce Docker, you can also install Docker on your local desktop or server.
For workstations, Docker has a product called Docker Desktop
(https://www.docker.com/products/docker-desktop) that is available or
Windows and Mac to create Docker containers locally. On servers—both
Windows and Linux—Docker is also available as a runtime or containers.

Container images

To start a new container, you need an image. An image contains all the software
you need to run within your container. Container images can be stored locally on
your machine, as well as in a container registry. There are public registries, such
as the public Docker Hub (https://hub.docker.com/), or private registries, such as
ACR. When you, as a user, don't have an image locally on your PC, you can pull an
image from a registry using the docker pull command.

In the following example, we will pull an image from the public Docker Hub
repository and run the actual container. You can run this example in Docker Labs,
which we introduced in the previous section, by following these instructions:

#First, we will pull an image
docker pull docker/whalesay
#We can then look at which images are stored locally
docker images
#Then we will run our container
docker run docker/whalesay cowsay boo

The sotware evolution that brought us here | 17

The output of these commands will look similar to Figure 1.3:

Figure 1.3: An example of running containers in Docker Labs

18 | Introduction to containers and Kubernetes

What happened here is that Docker rst pulled your image in multiple parts
and stored it locally on the machine it was running on. When you ran the
actual application, it used that local image to start a container. If we look
at the commands in detail, you will see that docker pull took in a single
parameter, docker/whalesay. If you don't provide a private container registry,
Docker will look in the public Docker Hub for images, which is where Docker pulled
this image from. The docker run command took in a couple o arguments. The rst
argument was docker/whalesay, which is the reference to the image. The next two
arguments, cowsay boo, are commands that were passed to the running container
to execute.

In the previous example, you learned that it is possible to run a container without
building an image rst. It is, however, very common that you will want to build
your own images. To do this, you use a Dockerle. A Dockerle contains steps
that Docker will follow to start from a base image and build your image. These
instructions can range rom adding les to installing sotware or setting up
networking.

In the next example, you will build a custom Docker image. This custom image will
display inspirational quotes in the whale output. The ollowing Dockerle will be
used to generate this custom image. You will create it in your Docker playground:

FROM docker/whalesay:latest
RUN apt-get -y -qq update
RUN apt-get install -qq -y fortunes
CMD /usr/games/fortune -a | cowsay

There are our lines in this Dockerle. The rst one will instruct Docker on
which image to use as a source image for this new image. The next two steps
are commands that are run to add new functionality to our image, in this case,
updating your apt repository and installing an application called fortunes. The
fortunes application is a small command-line tool that generates inspirational
quotes. We will use that to include quotes in the output rather than user input.
Finally, the CMD command tells Docker which command to execute when a
container based on this image is run.

The sotware evolution that brought us here | 19

You typically save a Dockerle in a le called Dockerfile, without an extension. To
build an image, you need to execute the docker build command and point it to the
Dockerle you created. In building the Docker image, the Docker daemon will read
the Dockerle and execute the dierent steps in the Dockerle. This command will
also output the steps it took to run a container and build your image. Let's walk
through a demo of building an image.

In order to create this Dockerle, open up a text editor via the vi Dockerfile
command. vi is an advanced text editor on the Linux command line. If you are not
familiar with it, let's walk through how you would enter the text in there:

1. After you've opened vi, hit the I key to enter insert mode.
2. Then, either copy and paste or type the four code lines.
3. Afterward, hit the Esc key, and type :wq! to write (w) your le and quit (q) the

text editor.

The next step is to execute docker build to build the image. We will add a
nal bit to that command, namely adding a tag to our image so we can call it
by a meaningful name. To build the image, you will use the docker build -t
smartwhale. command (don't orget to add the nal period here).

You will now see Docker execute a number of steps—four in this case—to build
the image. After the image is built, you can run your application. To run your
container, you run docker run smartwhale, and you should see an output similar
to Figure 1.4. However, you will probably see a different smart quote. This is due
to the fortunes application generating different quotes. If you run the container
multiple times, you will see different quotes appear, as shown in Figure 1.4:

20 | Introduction to containers and Kubernetes

Figure 1.4: Running a custom container

That concludes our overview and demo of containers. In this section, you started
with an existing container image and launched it on Docker Labs. Afterward,
you took that a step further and built your own container image, then started
containers using that image. You have now learned what it takes to build and run a
container. In the next section, we will cover Kubernetes. Kubernetes allows you to
run multiple containers at scale.

Kubernetes as a container orchestration platform

Building and running a single container seems easy enough. However, things can
get complicated when you need to run multiple containers across multiple servers.
This is where a container orchestrator can help. A container orchestrator takes
care of scheduling containers to be run on servers, restarting containers when they
fail, moving containers to a new host when a host becomes unhealthy, and much
more.

The current leading orchestration platform is Kubernetes (https://kubernetes.io/).
Kubernetes was inspired by Google's Borg project, which, by itself, was running
millions of containers in production.

Kubernetes as a container orchestration platorm | 21

Kubernetes takes a declarative approach to orchestration; that is, you specify what
you need, and Kubernetes takes care o deploying the workload you specied. You
don't need to start these containers manually yourself anymore, as Kubernetes will
launch the containers you specied.

Note

Although Kubernetes used to support Docker as the container runtime, that
support has been deprecated in Kubernetes version 1.20. In AKS, containerd
has become the deault container runtime starting with Kubernetes 1.19.

Throughout the book, you will build multiple examples that run containers in
Kubernetes, and you will learn more about the different objects in Kubernetes. In
this introductory chapter, you will learn three elementary objects in Kubernetes
that you will likely see in every application: a pod, a deployment, and a service.

Pods in Kubernetes

A pod in Kubernetes is the essential scheduling element. A pod is a group of one
or more containers. This means a pod can contain either a single container or
multiple containers. When creating a pod with a single container, you can use the
terms container and pod interchangeably. However, the term pod is still preferred
and is the term used throughout this book.

When a pod contains multiple containers, these containers share the same le
system and the same network namespace. This means that when a container that
is part o a pod writes a le, other containers in that same pod can read that le as
well. This also means that all containers in a pod can communicate with each other
using localhost networking.

In terms of design, you should only put containers that need to be tightly
integrated in the same pod. Imagine the following situation: you have an old web
application that does not support HTTPS. You want to upgrade that application
to support HTTPS. You could create a pod that contains your old web application
and includes another container that would do Transport Layer Security (TLS)
ofoading or that application, as described in Figure 1.5. Users would connect to
your application using HTTPS, while the container in the middle converts HTTPS
trac to HTTP:

22 | Introduction to containers and Kubernetes

Figure 1.5: An example o a multi-container pod that does HTTPS ooading

Note

This design principle is known as a sidecar. Microsot has a ree e-book
available that describes multiple multi-container pod designs and designing
distributed systems (https://azure.microsot.com/resources/designing-
distributed-systems/).

A pod, whether it be a single- or multi-container pod, is an ephemeral resource.
This means that a pod can be terminated at any point and restarted on another
node. When this happens, the state that was stored in that pod will be lost. If
you need to store state in your application, you either need to store that state in
external storage, such as an external disk or a le share, or store the state outside
of Kubernetes in an external database.

Deployments in Kubernetes

A deployment in Kubernetes provides a layer of functionality around pods. It allows
you to create multiple pods rom the same denition and to easily perorm updates
to your deployed pods. A deployment also helps with scaling your application, and
potentially even autoscaling your application.

Under the hood, a deployment creates a ReplicaSet, which in turn will create the
replica pods you requested. A ReplicaSet is another object in Kubernetes. The
purpose of a ReplicaSet is to maintain a stable set of replica pods running at any
given time. If you perform updates on your deployment, Kubernetes will create a
new ReplicaSet that will contain the updated pods. By default, Kubernetes will do
a rolling upgrade to the new version. This means that it will start a few new pods,
verify those are running correctly, and if so, then Kubernetes will terminate the old
pods and continue this loop until only new pods are running:

Kubernetes as a container orchestration platorm | 23

Figure1.6: The relationship between deployments, ReplicaSets, and pods

Services in Kubernetes

A service in Kubernetes is a network-level abstraction. This allows you to expose
multiple pods under a single IP address and a single DNS name.

Each pod in Kubernetes has its own private IP address. You could theoretically
connect to your applications using this private IP address. However, as mentioned
before, Kubernetes pods are ephemeral, meaning they can be terminated and
moved, which would change their IP address. By using a service, you can connect
to your applications using a single IP address. When a pod moves from one node
to another, the service ensures that trac is routed to the correct endpoint. I
there are multiple pods serving trac behind one service, that trac will be load
balanced between the different pods.

In this section, we have introduced Kubernetes and three essential objects with
Kubernetes. In the next section, we'll introduce AKS.

Azure Kubernetes Service

AKS makes creating and managing Kubernetes clusters easier.

A typical Kubernetes cluster consists of a number of master nodes and a number
of worker nodes. A node within Kubernetes is equivalent to a server or a virtual
machine (VM). The master nodes contain the Kubernetes API and a database that
contains the cluster state. The worker nodes are the machines that run your actual
workload.

24 | Introduction to containers and Kubernetes

AKS makes it easier to create a cluster. When you create an AKS cluster, AKS
sets up the Kubernetes master for you. AKS will then create one or more virtual
machine scale sets (VMSS) in your subscription and turn the VMs in these VMSSs
into worker nodes of your Kubernetes cluster in your network. In AKS, you have
the option to either use a free Kubernetes control plane or pay for a control plane
that comes with a nancially backed SLA. In either case, you also need to pay or
the VMs hosting your worker nodes:

Figure 1.7: Scheduling of pods in AKS

Within AKS, services running on Kubernetes are integrated with Azure Load
Balancer and Kubernetes Ingresses can be integrated with Azure Application
Gateway. The Azure Load Balancer is a layer-4 network load balancer service;
Application Gateway is a layer-7 HTTP-based load balancer. The integration
between Kubernetes and both services means that when you create a service or
Ingress in Kubernetes, Kubernetes will create a rule in an Azure Load Balancer
or Azure Application Gateway respectively. Azure Load Balancer or Application
Gateway will then route the trac to the right node in your cluster that hosts
your pod.

Summary | 25

Additionally, AKS adds a number of functionalities that make it easier to manage
a cluster. AKS contains logic to upgrade clusters to newer Kubernetes versions.
It also can easily scale your clusters, by either adding or removing nodes to
the cluster.

AKS also comes with integration options that make operations easier. AKS clusters
can be congured with integration with Azure Active Directory (Azure AD) to
make managing identities and role-based access control (RBAC) straightforward.
RBAC is the conguration process that denes which users get access to resources
and which actions they can take against those resources. AKS can also easily
be integrated into Azure Monitor for containers, which makes monitoring and
troubleshooting your applications simpler. You will learn about all these capabilities
throughout this book.

Summary

In this chapter, you learned about the concepts of containers and Kubernetes.
You ran a number of containers, starting with an existing image and then using an
image you built yourself. After that demo, you were introduced to three essential
Kubernetes objects: the pod, the deployment, and the service.

This provides the context for the remaining chapters, where you will deploy
containerized applications using Microsoft AKS. You will see how the AKS offering
from Microsoft streamlines deployment by handling many of the management and
operational tasks that you would have to do yourself if you managed and operated
your own Kubernetes infrastructure.

In the next chapter, you will use the Azure portal to create your rst AKS cluster.

2
Getting started with
Azure Kubernetes

Service
Installing and maintaining Kubernetes clusters correctly and securely is difcult.
Thankfully, all the major cloud providers, such as Azure, Amazon Web Services
(AWS), and Google Cloud Platform (GCP), facilitate installing and maintaining
clusters. In this chapter, you will navigate through the Azure portal, launch your
own cluster, and run a sample application. You will accomplish all o this rom your
browser.

The ollowing topics will be covered in this chapter:

• Creating a new Azure ree account

• Creating and launching your frst cluster

• Deploying and inspecting your frst demo application

28 | Getting started with Azure Kubernetes Service

Let's start by looking at dierent ways to create an Azure Kubernetes Service
(AKS) cluster, and then we will run our sample application.

Diferent ways to create an AKS cluster

In this chapter, you will use the Azure portal to deploy your AKS cluster. There are,
however, multiple ways to create an AKS cluster:

• Using the portal: The portal oers a graphical user interface (GUI) for
deploying your cluster through a wizard. This is a great way to deploy your
frst cluster. For multiple deployments or automated deployments, one o
the ollowing methods is recommended.

• Using the Azure CLI: The Azure command-line interface (CLI) is a
cross‑platorm CLI or managing Azure resources. This allows you to script
your cluster deployment, which can be integrated into other scripts.

• Using Azure PowerShell: Azure PowerShell is a set o PowerShell commands
used or managing Azure resources directly rom PowerShell. It can also be
used to create Kubernetes clusters.

• Using ARM templates: Azure Resource Manager (ARM) templates are
an Azure‑native way to deploy Azure resources using Infrastructure as
Code (IaC). You can declaratively deploy your cluster, allowing you to create
a template that can be reused by multiple teams.

• Using Terraform for Azure: Terraorm is an open‑source IaC tool developed
by HashiCorp. The tool is very popular in the open‑source community or
deploying cloud resources, including AKS. Like ARM templates, Terraorm
also uses declarative templates or your cluster.

In this chapter, you will create your cluster using the Azure portal. I you are
interested in deploying a cluster using either CLI, ARM templates, or Terraorm,
the ollowing Azure documentation contains steps on how to use these tools to
create your own clusters https://docs.microsot.com/azure/aks.

Getting started with the Azure portal | 29

Getting started with the Azure portal

We will start our initial cluster deployment using the Azure portal. The Azure
portal is a web‑based management console. It allows you to build, manage, and
monitor all your Azure deployments worldwide through a single console.

Note

To ollow along with the examples in this book, you will need an Azure
account. I you don't have an Azure account, you can create a ree account by
ollowing the steps at azure.microsot.com/ree. I you plan to run this in an
existing subscription, you will need owner rights to the subscription and the
ability to create service principals in Azure Active Directory (Azure AD).
All the examples in this book have been veried with a ree trial account.

We are going to jump straight in by creating our AKS cluster. By doing so, we are
also going to amiliarize ourselves with the Azure portal.

Creating your rst AKS cluster

To start, browse to the Azure portal on https://portal.azure.com. Enter the
keyword aks in the search bar at the top o the Azure portal. Click on Kubernetes
services under the Services category in the search results:

Figure 2.1: Searching for AKS with the search bar

30 | Getting started with Azure Kubernetes Service

This will take you to the AKS pane in the portal. As you might have expected, you
don't have any clusters yet. Go ahead and create a new cluster by hitting the +
Add button, and select the + Add Kubernetes cluster option:

Figure 2.2: Clicking the + Add button and the + Add Kubernetes cluster button
to start the cluster creation process

Note

There are a lot o options to congure when you're creating an AKS cluster.
For your rst cluster, we recommend sticking with the deaults rom the
portal and ollowing our naming guidelines during this example. The ollowing
settings were tested by us to work reliably with a ree account.

This will take you to the creation wizard to create your frst AKS cluster. The frst
step here is to create a new resource group. Click Create new, give your resource
group a name, and hit OK. I you want to ollow along with the examples in this
book, please name the resource group rg-handsonaks:

Getting started with the Azure portal | 31

Figure 2.3: Creating a new resource group

Next up, we'll provide the cluster details. Give your cluster a name—i you want to
ollow the examples in the book, please call it handsonaks. The region we will use
in the book is (US) West US 2, but you could use any other region of choice close
to your location. I the region you selected supports Availability Zones, unselect all
the zones.

Select a Kubernetes version—at the time o writing, version 1.19.6 is the latest
version that is supported; don't worry i that specifc version is not available or
you. Kubernetes and AKS evolve very quickly, and new versions are introduced
oten:

Note

For production environments, deploying a cluster in an Availability Zone is
recommended. However, since we are deploying a small cluster, not using
Availability Zones works best or the examples in the book.

32 | Getting started with Azure Kubernetes Service

Figure 2.4: Providing the cluster details

Next, change the node count to 2. For the purposes o the demo in this book, the
default Standard DS2 v2 node size is sufcient. This should make your cluster size
look similar to that shown in Figure 2.5:

Figure 2.5: Updated Node size and Node count

Note

Your ree account has a our-core limit that will be breached i you go with the
deaults.

Getting started with the Azure portal | 33

The fnal view o the frst pane should look like Figure 2.6. There are a number o
confguration panes, which you need not change or the demo cluster we'll that
you'll use throughout this book. Since you are ready, hit the Review + create button
to do a fnal review and create your cluster:

Figure 2.6: Setting the cluster conguration

34 | Getting started with Azure Kubernetes Service

In the fnal view, Azure will validate the confguration that was applied to your frst
cluster. I you get the message Validation passed, click Create:

Figure 2.7: The nal validation o your cluster conguration

Getting started with the Azure portal | 35

Deploying the cluster should take roughly 10 minutes. Once the deployment is
complete, you can check the deployment details as shown in Figure 2.8:

Figure 2.8: Deployment details once the cluster is successfully deployed

36 | Getting started with Azure Kubernetes Service

I you get a quota limitation error, as shown in Figure 2.9, check the settings and try
again. Make sure that you select the Standard DS2_v2 node size and only two nodes:

Figure 2.9: Retrying with a smaller cluster size due to a quota limit error

Moving to the next section, we'll take a quick frst look at your cluster; hit the Go
to resource button as seen in Figure 2.8. This will take you to the AKS cluster
dashboard in the portal.

A quick overview of your cluster in the Azure portal

If you hit the Go to resource button in the previous section, you will see the
overview o your cluster in the Azure portal:

Getting started with the Azure portal | 37

Figure 2.10: The AKS pane in the Azure portal

38 | Getting started with Azure Kubernetes Service

This is a quick overview o your cluster. It displays the name, the location, and the
API server address. The navigation menu on the let provides dierent options to
control and manage your cluster. Let's walk through a couple o interesting options
that the has to portal oer.

The Kubernetes resources section gives you an insight into the workloads that are
running on your cluster. You could, or instance, see running deployments and
running pods in your cluster. It also allows you to create new resources on your
cluster. We will use this section later in the chapter ater you have deployed your
frst application on AKS.

In the Node pools pane, you can scale your existing node pool (meaning the nodes
or servers in your cluster) either up or down by adding or removing nodes. You can
add a new node pool, potentially with a dierent virtual machine size, and you can
also upgrade your node pools individually. In Figure 2.11, you can see the + Add node
pool option at the top-left corner, and if you select your node pool, the Upgrade
and Scale options also become available in the top bar:

Figure 2.11: Adding, scaling, and upgrading node pools

In the Cluster conguration pane, you can instruct AKS to upgrade the control
plane to a newer version. Typically, in a Kubernetes upgrade, you frst upgrade the
control plane, and then the individual node pools separately. This pane also allows
you to enable role-based access control (RBAC) (which is enabled by deault), and
optionally integrate your cluster with Azure AD. You will learn more about Azure
AD integration in Chapter 8, Role-based access control in AKS:

Getting started with the Azure portal | 39

Figure 2.12: Upgrading the Kubernetes version of the API server using the Upgrade pane

Finally, the Insights pane allows you to monitor your cluster inrastructure and the
workloads running on your cluster. Since your cluster is brand new, there isn't a lot
o data to investigate. We will return back to this, in Chapter 7, Monitoring the AKS
cluster and the application:

Figure 2.13: Displaying cluster utilization using the Insights pane

40 | Getting started with Azure Kubernetes Service

This concludes our quick overview o the cluster and some o the interesting
confguration options in the Azure portal. In the next section, we'll connect to our
AKS cluster using Cloud Shell and then launch a demo application on top o this
cluster.

Accessing your cluster using Azure Cloud Shell

Once the deployment is completed successully, fnd the small Cloud Shell icon
near the search bar, as highlighted in Figure 2.14, and click it:

Figure 2.14: Clicking the Cloud Shell icon to open Azure Cloud Shell

The portal will ask you to select either PowerShell or Bash as your default shell
experience. As we will be working mainly with Linux workloads, please select Bash:

Figure 2.15: Selecting the Bash option

Getting started with the Azure portal | 41

I this is the frst time you have launched Cloud Shell, you will be asked to create a
storage account; confrm and create it:

Figure 2.16: Creating a new storage account for Cloud Shell

Ater creating the storage, you might get an error message that contains a mount
storage error. I that occurs, please restart your Cloud Shell:

Figure 2.17: Hitting the restart button upon receiving a mount storage error

42 | Getting started with Azure Kubernetes Service

Click on the power button. It should restart, and you should see something similar
to Figure 2.18:

Figure 2.18: Launching Cloud Shell successfully

You can pull the splitter/divider up or down to see more or less o the shell:

Figure 2.19: Using the divider to make Cloud Shell larger or smaller

The command‑line tool that is used to interace with Kubernetes clusters is
called kubectl. The beneft o using Azure Cloud Shell is that this tool, along
with many others, comes preinstalled and is regularly maintained. kubectl uses
a confguration fle stored in ~/.kube/config to store credentials to access your
cluster.

Note

There is some discussion in the Kubernetes community around the correct
pronunciation o kubectl. The common way to pronounce it is either
kube-c-t-l, kube-control, or kube-cuddle.

Getting started with the Azure portal | 43

To get the required credentials to access your cluster, you need to type the
ollowing command:

az aks get-credentials \
--resource-group rg-handsonaks \
--name handsonaks

Note

In this book, you will commonly see longer commands spread over multiple
lines using the backslash symbol. This helps improve the readability o the
commands, while still allowing you to copy and paste them. I you are typing
these commands, you can saely ignore the backslash and type the ull
command in a single line.

To veriy that you have access, type the ollowing:

kubectl get nodes

You should see something like Figure 2.20:

Figure 2.20: Output o the kubectl get nodes command

This command has verifed that you can connect to your AKS cluster. In the next
section, you'll go ahead and launch your frst application.

Deploying and inspecting your rst demo application

As you are all connected, let's launch your very frst application. In this section, you
will deploy your frst application and inspect it using kubectl and later using the
Azure portal. Let's start by deploying the application.

44 | Getting started with Azure Kubernetes Service

Deploying the demo application

In this section, you will deploy your demo application. For this, you will have to
write a bit o code. In Cloud Shell, there are two options to edit code. You can do
this either via command-line tools such as vi or nano or you can use a GUI‑based
code editor by typing the code commands in Cloud Shell. Throughout this book,
you will mainly be instructed to use the graphical editor in the examples, but eel
ree to use any other tool you eel most comortable with.

For the purpose o this book, all the code examples are hosted in a GitHub
repository. You can clone this repository to your Cloud Shell and work with the
code examples directly. To clone the GitHub repo into your Cloud Shell, use the
ollowing command:

git clone https://github.com/PacktPublishing/Hands-on-Kubernetes-on-
Azure-Third-Edition.git Hands-On-Kubernetes-on-Azure

To access the code examples or this chapter, navigate into the directory o the
code examples and go to the Chapter02 directory:

cd Hands-On-Kubernetes-on-Azure/Chapter02/

You will use the code directly in the Chapter02 older or now. At this point
in the book, you will not ocus on what is in the code fles just yet. The goal o
this chapter is to launch a cluster and deploy an application on top o it. In the
ollowing chapters, we will dive into how Kubernetes confguration fles are built
and how you can create your own.

You will create an application based on the defnition in the azure-vote.yaml fle.
To open that fle in Cloud Shell, you can type the ollowing command:

code azure-vote.yaml

Here is the code example or your convenience:

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: azure-vote-back
5 spec:
6 replicas: 1
7 selector:

Getting started with the Azure portal | 45

8 matchLabels:
9 app: azure-vote-back
10 template:
11 metadata:
12 labels:
13 app: azure-vote-back
14 spec:
15 containers:
16 - name: azure-vote-back
17 image: redis
18 resources:
19 requests:
20 cpu: 100m
21 memory: 128Mi
22 limits:
23 cpu: 250m
24 memory: 256Mi
25 ports:
26 - containerPort: 6379
27 name: redis
28 ---
29 apiVersion: v1
30 kind: Service
31 metadata:
32 name: azure-vote-back
33 spec:
34 ports:
35 - port: 6379
36 selector:
37 app: azure-vote-back
38 ---
39 apiVersion: apps/v1
40 kind: Deployment
41 metadata:
42 name: azure-vote-front
43 spec:
44 replicas: 1
45 selector:
46 matchLabels:
47 app: azure-vote-front
48 template:
49 metadata:
50 labels:

46 | Getting started with Azure Kubernetes Service

51 app: azure-vote-front
52 spec:
53 containers:
54 - name: azure-vote-front
55 image: microsoft/azure-vote-front:v1
56 resources:
57 requests:
58 cpu: 100m
59 memory: 128Mi
60 limits:
61 cpu: 250m
62 memory: 256Mi
63 ports:
64 - containerPort: 80
65 env:
66 - name: REDIS
67 value: "azure-vote-back"
68 ---
69 apiVersion: v1
70 kind: Service
71 metadata:
72 name: azure-vote-front
73 spec:
74 type: LoadBalancer
75 ports:
76 - port: 80
77 selector:
78 app: azure-vote-front

You can make changes to fles in the Cloud Shell code editor. I you've made
changes, you can save them by clicking on the ... icon in the upper-right corner,
and then click Save to save the fle as highlighted in Figure 2.21:

Getting started with the Azure portal | 47

Figure 2.21: Save the azure-vote.yaml le

The fle should be saved. You can check this with the ollowing command:

cat azure-vote.yaml

Note:

Hitting the Tab button expands the le name in Linux. In the preceding
scenario, i you hit Tab ater typing az, it should expand to azure-vote.
yaml.

Now, let's launch the application:

kubectl create -f azure-vote.yaml

You should quickly see the output as shown in Figure 2.22, it tells you which
resources have been created:

Figure 2.22: Output of the kubectl create command

48 | Getting started with Azure Kubernetes Service

You have successully created your demo application. In the next section, you
will inspect all the dierent objects Kubernetes created or this application and
connect to your application.

Exploring the demo application

In the previous section, you deployed a demo application. In this section, you will
explore the dierent objects that Kubernetes created or this application and
connect to it.

You can check the progress o the deployment by typing the ollowing command:

kubectl get pods

If you typed this soon after creating the application, you might have seen that a
certain pod was still in the ContainerCreating process:

Figure 2.23: Output of the kubectl get pods command

Note

Typing kubectl can become tedious. You can use the alias command to
make your lie easier. You can use k instead o kubectl as the alias with
the ollowing command: alias k=kubectl. Ater running the preceding
command, you can just use k get pods. For instructional purposes in this
book, we will continue to use the ull kubectl command.

Hit the up arrow key and press Enter to repeat the kubectl get pods command
until the status of all pods is Running. Setting up all the pods takes some time, and
you could optionally ollow their status using the ollowing command:

kubectl get pods --watch

To stop ollowing the status o the pods (when they are all in a running state), you
can press Ctrl + C.

Getting started with the Azure portal | 49

In order to access your application publicly, you need one more thing. You need to
know the public IP o the load balancer so that you can access it. I you remember
from Chapter 1, Introduction to containers and Kubernetes, a service in Kubernetes
will create an Azure load balancer. This load balancer will get a public IP in your
application so you can access it publicly.

Type the ollowing command to get the public IP o the load balancer:

kubectl get service azure-vote-front --watch

At frst, the external IP might show pending. Wait or the public IP to appear and
then press Ctrl + C to exit:

Figure 2.24: Watching the service IP change from pending to the actual IP address

Note the external IP address and type it in a browser. You should see an output
similar to Figure 2.25:

Figure 2.25: The actual application you just launched

Click on Cats or Dogs and watch the count go up.

To see all the objects in Kubernetes that were created or your application, you can
use the kubectl get all command. This will show an output similar to Figure 2.26:

50 | Getting started with Azure Kubernetes Service

Figure 2.26: Exploring all the Kubernetes objects created for your application

As you can see, a number o objects were created:

• Pods: You will see two pods, one or the back end and one or the ront end.

• Services: You will also see two services, one or the back end o type
ClusterIP and one or the ront end o type LoadBalancer. What these types
mean will be explored in Chapter 3, Application deployment on AKS.

• Deployments: You will also see two deployments.

• ReplicaSets: And fnally you'll see two ReplicaSets.

You can also view these objects rom the Azure portal. To see, or example, the
two deployments, you can click onWorkloads in the left-hand navigation menu
o the AKS pane, and you will see all the deployments in your cluster as shown in
Figure 2.27. This fgure shows you all the deployments in your cluster, including the
system deployments. At the bottom o the list, you can see your own deployments.
As you can also see in this fgure, you can explore other objects such as pods and
ReplicaSets using the top menu:

Getting started with the Azure portal | 51

Figure 2.27: Exploring the two deployments part of your application in the Azure portal

You have now launched your own cluster and your frst Kubernetes application.
Note that Kubernetes took care of tasks such as connecting the front end and the
back end, and exposing them to the outside world, as well as providing storage or
the services.

Beore moving on to the next chapter, let's clean up your deployment. Since
you created everything rom a fle, you can also delete everything by pointing
Kubernetes to that fle. Type kubectl delete -f azure-vote.yaml and watch all
your objects get deleted:

Figure 2.28: Cleaning up the application

52 | Getting started with Azure Kubernetes Service

In this section, you have connected to your AKS cluster using Cloud Shell,
successully launched and connected to a demo application, explored the objects
created using Cloud Shell and the Azure portal, and fnally, cleaned up the
resources that were created.

Summary

Having completed this chapter, you will now be able to access and navigate the
Azure portal to perorm all the unctions required to deploy an AKS cluster. We
used the ree trial on Azure to our advantage to learn the ins and outs o AKS. We
also launched our own AKS cluster with the ability to customize confgurations i
required using the Azure portal.

We also used Cloud Shell without installing anything on the computer. This is
important or all the upcoming sections, where you will be doing more than just
launching simple applications. Finally, we launched a publicly accessible service.
The skeleton o this application is the same as or complex applications that we will
cover in the later chapters.

In the next chapter, we will take an in‑depth look at dierent deployment options
to deploy applications onto AKS.

Section 2:
Deploying on AKS

At this point in the book, you have learned the basics of containers and Kubernetes
and set up a Kubernetes cluster on Azure. In this section, you will learn how to
deploy applications on top of that Kubernetes cluster.

Throughout this section, you will progressively build and deploy different
applications on top of AKS. You will start by deploying a simple application, and
later introduce concepts such as scaling, monitoring, and authentication. By the
end of the section, you should feel comfortable deploying applications to AKS.

This section contains the following chapters:

• Chapter 3, Application deployment on AKS

• Chapter 4, Building scalable applications

• Chapter 5, Handling common failures in AKS

• Chapter 6, Securing your application with HTTPS

• Chapter 7, Monitoring the AKS cluster and the application

Let's start this section by exploring application deployment on AKS in Chapter 3,
Application deployment on AKS.

3
Application

deployment on AKS

In this chapter, you will deploy two applications on Azure Kubernetes
Service (AKS). An application consists of multiple parts, and you will build the
applications one step at a time while the conceptual model behind them is
explained. You will be able to easily adapt the steps in this chapter to deploy any
other application on AKS.

To deploy the applications and make changes to them, you will be using YAML
fles. YAML is a recursive acronym or YAML Ain't Markup Language. YAML is
a language that is used to create confguration fles to deploy to Kubernetes.
Although you can use either JSON or YAML fles to deploy applications to
Kubernetes, YAML is the most commonly used language to do so. YAML became
popular because it is easier for a human to read when compared to JSON or
XML. You will see multiple examples o YAML fles throughout this chapter and
throughout the book.

56 | Application deployment on AKS

During the deployment of the sample guestbook application, you will see
Kubernetes concepts in action. You will see how a deployment is linked to a
ReplicaSet, and how that is linked to the pods that are deployed. A deployment is
an object in Kubernetes that is used to defne the desired state o an application.
A deployment will create a ReplicaSet. A ReplicaSet is an object in Kubernetes
that guarantees that a certain number of pods will always be available. Hence,
a ReplicaSet will create one or more pods. A pod is an object in Kubernetes
that is a group o one or more containers. Let's revisit the relationship between
deployments, ReplicaSets, and pods:

Figure 3.1: Relationship between a deployment, a ReplicaSet, and pods

While deploying the sample applications, you will use the service object to connect
to the application. A service in Kubernetes is an object that is used to provide a
static IP address and DNS name to an application. Since a pod can be killed and
moved to dierent nodes in the cluster, a service ensures you can connect to a
static endpoint for your application.

You will also edit the sample applications to provide confguration details using a
ConfgMap. A ConfgMap is an object that is used to provide confguration details
to pods. It allows you to keep confguration settings outside o the actual container.
You can then provide these confguration details to your application by connecting
the ConfgMap to your deployment.

Finally, you will be introduced to Helm. Helm is a package manager or Kubernetes
that helps to streamline the deployment process. You will deploy a WordPress site
using Helm and gain an understanding o the value Helm brings to Kubernetes. This
WordPress installation makes use of persistent storage in Kubernetes and you will
learn how persistent storage in AKS is set up.

The ollowing topics will be covered in this chapter:

• Deploying the sample guestbook application step by step

• Full deployment of the sample guestbook application

• Using Helm to install complex Kubernetes applications

Deploying the sample guestbook application step by step | 57

We'll begin with the sample guestbook application.

Deploying the sample guestbook application step by step

In this chapter, you will deploy the classic guestbook sample Kubernetes
application. You will be mostly following the steps from https://kubernetes.io/
docs/tutorials/stateless-application/guestbook/ with some modifcations. You
will employ these modifcations to show additional concepts, such as ConfgMaps,
that are not present in the original sample.

The sample guestbook application is a simple, multi-tier web application. The
dierent tiers in this application will have multiple instances. This is benefcial
or both high availability and scalability. The guestbook's ront end is a stateless
application because the ront end doesn't store any state. The Redis cluster in the
back end is stateful as it stores all the guestbook entries.

You will be using this application as the basis for testing out the scaling of the back
end and the front end, independently, in the next chapter.

Beore we get started, let's consider the application that we'll be deploying.

Introducing the application

The application stores and displays guestbook entries. You can use it to record the
opinion o all the people who visit your hotel or restaurant, or example.

Figure 3.2 shows you a high-level overview o the application. The application
uses PHP as a ront end. The ront end will be deployed using multiple replicas.
The application uses Redis or its data storage. Redis is an in-memory key-value
database. Redis is most often used as a cache.

58 | Application deployment on AKS

Figure 3.2: High-level overview of the guestbook application

We will begin deploying this application by deploying the Redis master.

Deploying the Redis master

In this section, you are going to deploy the Redis master. You will learn about the
YAML syntax that is required or this deployment. In the next section, you will
make changes to this YAML. Beore making changes, let's start by deploying the
Redis master.

Perform the following steps to complete the task:

1. Open your friendly Azure Cloud Shell, as highlighted in Figure 3.3:

Figure 3.3: Opening the Cloud Shell

Deploying the sample guestbook application step by step | 59

2. I you have not cloned the GitHub repository or this book, please do so now by
using the following command:

git clone https://github.com/PacktPublishing/Hands-on-Kubernetes-on-
Azure-Third-Edition/

3. Change into the directory for Chapter 3 using the following command:

cd Hands-On-Kubernetes-on-Azure/Chapter03/

4. Enter the following command to deploy the master:

kubectl apply -f redis-master-deployment.yaml

It will take some time for the application to download and start running. While
you wait, let's understand the command you just typed and executed. Let's
start by exploring the content o the YAML fle that was used (the line numbers
are used for explaining key elements from the code snippets):

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: redis-master
5 labels:
6 app: redis
7 spec:
8 selector:
9 matchLabels:
10 app: redis
11 role: master
12 tier: backend
13 replicas: 1
14 template:
15 metadata:
16 labels:
17 app: redis
18 role: master
19 tier: backend
20 spec:
21 containers:
22 - name: master

60 | Application deployment on AKS

23 image: k8s.gcr.io/redis:e2e
24 resources:
25 requests:
26 cpu: 100m
27 memory: 100Mi
28 limits:
29 cpu: 250m
30 memory: 1024Mi
31 ports:
32 - containerPort: 6379

Let's dive deeper into the code line by line to understand the provided
parameters:

• Line 2: This states that we are creating a deployment. As explained in
Chapter 1, Introduction to containers and Kubernetes, a deployment is a
wrapper around pods that makes it easy to update and scale pods.

• Lines 4-6: Here, the deployment is given a name, which is redis-
master.

• Lines 7-12: These lines let us specify the containers that this
deployment will manage. In this example, the deployment will select
and manage all containers for which labels match (app: redis, role:
master, and tier: backend). The preceding label exactly matches the
labels provided in lines 14-19.

• Line 13: This line tells Kubernetes that we need exactly one copy
o the running Redis master. This is a key aspect o the declarative
nature o Kubernetes. You provide a description o the containers your
applications need to run (in this case, only one replica of the Redis
master), and Kubernetes takes care of it.

• Line 14-19: These lines add labels to the running instance so that it can
be grouped and connected to other pods. We will discuss them later to
see how they are used.

• Line 22: This line gives the single container in the pod a name, which
is master. In the case of a multi-container pod, each container in a pod
requires a unique name.

Deploying the sample guestbook application step by step | 61

• Line 23: This line indicates the container image that will be run. In this
case, it is the redis image tagged with e2e (the latest Redis image that
successfully passed its end-to-end [e2e] tests).

• Lines 24-30: These lines set the cpu/memory resources requested or
the container. A request in Kubernetes is a reservation o resources
that cannot be used by other pods. I those resources are not available
in the cluster, the pod will not start. In this case, the request is 0.1 CPU,
which is equal to 100m and is also oten reerred to as 100 millicores.
The memory requested is 100Mi, or 104,857,600 bytes, which is equal
to ~105 MB. CPU and memory limits are set in a similar way. Limits are
caps on what a container can use. I your pod hits the CPU limit, it'll get
throttled, whereas i it hits the memory limits, it'll get restarted. Setting
requests and limits is a best practice in Kubernetes. For more ino,
refer to https://kubernetes.io/docs/concepts/confguration/manage-
compute-resources-container/.

• Lines 31-32: These two lines indicate that the container is going to
listen on port 6379.

As you can see, the YAML defnition or the deployment contains several settings
and parameters that Kubernetes will use to deploy and confgure your application.

Note

The Kubernetes YAML denition is similar to the arguments given to Docker
to run a particular container image. I you had to run this manually, you would
dene this example in the ollowing way:
Run a container named master, listening on port 6379, with 100M memory
and 100m CPU using the redis:e2e image.
docker run --name master -p 6379:6379 -m 100M -c 100m -d k8s.gcr.io/
redis:e2e

In this section, you have deployed the Redis master and learned about the syntax o
the YAML fle that was used to create this deployment. In the next section, you will
examine the deployment and learn about the different elements that were created.

62 | Application deployment on AKS

Examining the deployment

The redis-master deployment should be complete by now. Continue in the Azure
Cloud Shell that you opened in the previous section and type the ollowing:

kubectl get all

You should get an output similar to the one displayed in Figure 3.4. In your case, the
name of the pod and the ReplicaSet might contain different IDs at the end of the
name. If you do not see a pod, a deployment, and a ReplicaSet, please run the code
as explained in step 4 in the previous section again.

Figure 3.4: Objects that were created by your deployment

You can see that you created a deployment named redis-master. It controls a
ReplicaSet named redis-master-f46ff57fd. On further examination, you will also
fnd that the ReplicaSet is controlling a pod, redis- master-f46ff57fd-b8cjp.
Figure 3.1 has a graphical representation of this relationship.

More details can be obtained by executing the kubectl describe <object>
<instance-name> command, as follows:

kubectl describe deployment/redis-master

Deploying the sample guestbook application step by step | 63

This will generate an output as follows:

Figure 3.5: Description of the deployment

You have now launched a Redis master with the deault confguration. Typically,
you would launch an application with an environment-specifc confguration.

In the next section, you will get acquainted with a new concept called ConfgMaps
and then recreate the Redis master. So, before proceeding, clean up the current
version, which you can do by running the ollowing command:

kubectl delete deployment/redis-master

64 | Application deployment on AKS

Executing this command will produce the following output:

deployment.apps "redis-master" deleted

In this section, you examined the Redis master deployment you created. You
saw how a deployment relates to a ReplicaSet and how a ReplicaSet relates
to pods. In the following section, you will recreate this Redis master with an
environment-specifc confguration provided via a ConfgMap.

Redis master with a CongMap

There was nothing wrong with the previous deployment. In practical use cases, it
would be rare that you would launch an application without some confguration
settings. In this case, you are going to set the confguration settings or redis-
master using a ConfgMap.

A ConfgMap is a portable way o confguring containers without having specialized
images or each environment. It has a key-value pair or data that needs to be set
on a container. A ConfgMap is used or non-sensitive confguration. Kubernetes
has a separate object called a Secret. A Secret is used or confgurations that
contain critical data such as passwords. This will be explored in detail in Chapter 10,
Storing Secrets in AKS of this book.

In this example, you are going to create a ConfgMap. In this ConfgMap, you will
confgure redis-config as the key and the value will be the ollowing two lines:

maxmemory 2mb
maxmemory-policy allkeys-lru

Now, let's create this ConfgMap. There are two ways to create a ConfgMap:

• Creating a ConfgMap rom a fle

• Creating a ConfgMap rom a YAML fle

In the ollowing two sections, you'll explore both.

Deploying the sample guestbook application step by step | 65

Creating a CongMap rom a le

The ollowing steps will help us create a ConfgMap rom a fle:

1. Open the Azure Cloud Shell code editor by typing code redis-config in the
terminal. Copy and paste the ollowing two lines and save the fle as redis-
config:

maxmemory 2mb
maxmemory-policy allkeys-lru

2. Now you can create the ConfgMap using the ollowing code:

kubectl create confgmap \
example-redis-confg --rom-fle=redis-confg

You should get an output as follows:

confgmap/example-redis-confg created

3. You can use the same command to describe this ConfgMap:

kubectl describe confgmap/example-redis-confg

The output will be as shown in Figure 3.6:

Figure 3.6: Description o the CongMap

In this example, you created the ConfgMap by reerring to a fle on disk. A dierent
way to deploy ConfgMaps is by creating them rom a YAML fle. Let's have a look at
how this can be done in the following section.

66 | Application deployment on AKS

Creating a CongMap rom a YAML le

In this section, you will recreate the ConfgMap rom the previous section using a
YAML fle:

1. To start, delete the previously created ConfgMap:

kubectl delete confgmap/example-redis-confg

2. Copy and paste the ollowing lines into a fle named example-redis-config.
yaml, and then save the fle:

1 apiVersion: v1
2 data:
3 redis-confg: |-
4 maxmemory 2mb
5 maxmemory-policy allkeys-lru
6 kind: ConfgMap
7 metadata:
8 name: example-redis-confg

3. You can now create your ConfgMap via the ollowing command:

kubectl create - example-redis-confg.yaml

You should get an output as follows:

confgmap/example-redis-confg created

4. Next, run the following command:

kubectl describe confgmap/example-redis-confg

This command returns the same output as the previous one, as shown in
Figure 3.6.

Deploying the sample guestbook application step by step | 67

As you can see, using a YAML fle, you were able to create the same ConfgMap.

Note

kubectl get has the useul -o option, which can be used to get the output o
an object in either YAML or JSON. This is very useul in cases where you have
made manual changes to a system and want to see the resulting object in
YAML ormat. You can get the current CongMap in YAML using the ollowing
command:
kubectl get -o yaml configmap/example-redis-config

Now that you have the ConfgMap defned, let's use it.

Using a CongMap to read in conguration data

In this section, you will reconfgure the redis-master deployment to read
confguration rom the ConfgMap:

1. To start, modify redis-master-deployment.yaml to use the ConfgMap as
follows. The changes you need to make will be explained after the source code:

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: redis-master
5 labels:
6 app: redis
7 spec:
8 selector:
9 matchLabels:
10 app: redis
11 role: master
12 tier: backend
13 replicas: 1
14 template:
15 metadata:

68 | Application deployment on AKS

16 labels:
17 app: redis
18 role: master
19 tier: backend
20 spec:
21 containers:
22 - name: master
23 image: k8s.gcr.io/redis:e2e
24 command:
25 - redis-server
26 - "/redis-master/redis.conf"
27 env:
28 - name: MASTER
29 value: "true"
30 volumeMounts:
31 - mountPath: /redis-master
32 name: confg
33 resources:
34 requests:
35 cpu: 100m
36 memory: 100Mi
37 ports:
38 - containerPort: 6379
39 volumes:
40 - name: confg
41 confgMap:
42 name: example-redis-confg
43 items:
44 - key: redis-confg
45 path: redis.conf

Note

I you downloaded the source code accompanying this book, there is a le
in Chapter 3, Application deployment on AKS, called redis-master-deployment_
Modified.yaml, that has the necessary changes applied to it.

Deploying the sample guestbook application step by step | 69

Let's dive deeper into the code to understand the dierent sections:

• Lines 24-26: These lines introduce a command that will be executed
when your pod starts. In this case, this will start the redis-server
pointing to a specifc confguration fle.

• Lines 27-29: These lines show how to pass confguration data to your
running container. This method uses environment variables. In Docker
orm, this would be equivalent to docker run -e "MASTER=true".
--name master -p 6379:6379 -m 100M -c 100m -d Kubernetes /
redis:v1. This sets the environment variable MASTER to true.
Your application can read the environment variable settings or its
confguration.

• Lines 30-32: These lines mount the volume called config (this volume
is defned in lines 39-45) on the /redis-master path on the running
container. It will hide whatever exists on /redis-master on the original
container.

• In Docker terms, it would be equivalent to docker run -v config:/
redis-master. -e "MASTER=TRUE" --name master -p 6379:6379 -m
100M -c 100m -d Kubernetes /redis:v1.

• Line 40: This gives the volume the name config. This name will be used
within the context of this pod.

• Lines 41-42: This declares that this volume should be loaded rom the
example-redis-config ConfgMap. This ConfgMap should already exist
in the system. You have already defned this, so you are good.

• Lines 43-45: Here, you are loading the value o the redis-config key
(the two-line maxmemory settings) as a redis.conf fle.

70 | Application deployment on AKS

By adding the ConfgMap as a volume and mounting the volume, you are able to
load dynamic confguration.

1. Let's create this updated deployment:

kubectl create - redis-master-deployment_Modifed.yaml

This should output the following:

deployment.apps/redis-master created

2. Let's now make sure that the confguration was successully applied. First, get
the pod's name:

kubectl get pods

This should return an output similar to Figure 3.7:

Figure 3.7: Details of the pod

3. Then exec into the pod and veriy that the settings were applied:

kubectl exec -it redis-master-<pod-id> -- redis-cli

This open a redis-cli session with the running pod. Now you can get the
maxmemory confguration:

CONFIG GET maxmemory

And then you can get the maxmemory-policy confguration:

CONFIG GET maxmemory-policy

This should give you an output similar to Figure 3.8:

Figure 3.8: Veriying the Redis conguration in the pod

Complete deployment o the sample guestbook application | 71

4. To leave the Redis shell, type the exit command.

To summarize, you have just perormed an important part o confguring cloud-
native applications, namely providing dynamic confguration data to an application.
You will have also noticed that the apps have to be confgured to read confg
dynamically. Ater you set up your app with confguration, you accessed a running
container to veriy the running confguration. You will use this methodology
requently throughout this book to veriy the unctionality o running applications.

Note

Connecting to a running container by using the kubectl exec command is
useul or troubleshooting and doing diagnostics. Due to the ephemeral
nature o containers, you should never connect to a container to do additional
conguration or installation. This should either be part o your container
image or conguration you provide via Kubernetes (as you just did).

In this section, you confgured the Redis master to load confguration data rom a
ConfgMap. In the next section, we will deploy the end-to-end application.

Complete deployment o the sample guestbook application

Having taken a detour to understand the dynamic confguration o applications
using a ConfgMap, you will now return to the deployment o the rest o
the guestbook application. You will once again come across the concepts of
deployment, ReplicaSets, and pods. Apart from this, you will also be introduced to
another key concept, called a service.

To start the complete deployment, we are going to create a service to expose the
Redis master service.

72 | Application deployment on AKS

Exposing the Redis master service

When exposing a port in plain Docker, the exposed port is constrained to the
host it is running on. With Kubernetes networking, there is network connectivity
between dierent pods in the cluster. However, pods themselves are ephemeral in
nature, meaning they can be shut down, restarted, or even moved to other hosts
without maintaining their IP address. If you were to connect to the IP of a pod
directly, you might lose connectivity i that pod was moved to a new host.

Kubernetes provides the service object, which handles this exact problem. Using
label-matching selectors, it sends trafc to the right pods. I there are multiple
pods serving trafc to a service, it will also do load balancing. In this case, the
master has only one pod, so it just ensures that the trafc is directed to the pod
independent o the node the pod runs on. To create the service, run the ollowing
command:

kubectl apply -f redis-master-service.yaml

The redis-master-service.yaml fle has the ollowing content:

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: redis-master
5 labels:
6 app: redis
7 role: master
8 tier: backend
9 spec:
10 ports:
11 - port: 6379
12 targetPort: 6379
13 selector:
14 app: redis
15 role: master
16 tier: backend

Complete deployment o the sample guestbook application | 73

Let's now see what you have created using the preceding code:

• Lines 1-8: These lines tell Kubernetes that we want a service called redis-
master, which has the same labels as our redis-master server pod.

• Lines 10-12: These lines indicate that the service should handle trafc
arriving at port 6379 and forward it to port 6379 of the pods that match the
selector defned between lines 13 and 16.

• Lines 13-16: These lines are used to fnd the pods to which the incoming
trafc needs to be sent. So, any pod with labels matching (app: redis,
role: master and tier: backend) is expected to handle port 6379 trafc.
I you look back at the previous example, those are the exact labels we
applied to that deployment.

You can check the properties o the service by running the ollowing command:

kubectl get service

This will give you an output as shown in Figure 3.9:

Figure 3.9: Properties of the created service

You see that a new service, named redis-master, has been created. It has a
Cluster-IP of 10.0.106.207 (in your case, the IP will likely be different). Note that
this IP will work only within the cluster (hence the ClusterIP type).

Note

You are now creating a service o type ClusterIP. There are other types o
service as well, which will be introduced later in this chapter.

74 | Application deployment on AKS

A service also introduces a Domain Name Server (DNS) name or that service. The
DNS name is of the form <service-name>.<namespace>.svc.cluster.local; in
this case, it would be redis-master.default.svc.cluster.local. To see this in
action, we'll do a name resolution on our redis-master pod. The default image
doesn't have nslookup installed, so we'll bypass that by running a ping command.
Don't worry i that trafc doesn't return; this is because you didn't expose ping on
your service, only the redis port. The command is, however, useul to see the ull
DNS name and the name resolution work. Let's have a look:

kubectl get pods
#note the name of your redis-master pod
kubectl exec -it redis-master-<pod-id> -- bash
ping redis-master

This should output the resulting name resolution, showing you the Fully Qualifed
Domain Name (FQDN) o your service and the IP address that showed up earlier.
You can stop the ping command from running by pressing Ctrl+C. You can exit the
pod via the exit command, as shown in Figure 3.10:

Figure 3.10: Using a ping command to view the FQDN of your service

In this section, you exposed the Redis master using a service. This ensures that
even i a pod moves to a dierent host, it can be reached through the service's
IP address. In the next section, you will deploy the Redis replicas, which help to
handle more read trafc.

Complete deployment o the sample guestbook application | 75

Deploying the Redis replicas

Running a single back end on the cloud is not recommended. You can confgure
Redis in a leader-ollower (master-slave) setup. This means that you can have
a master that will serve write trafc and multiple replicas that can handle read
trafc. It is useul or handling increased read trafc and high availability.

Let's set this up:

1. Create the deployment by running the following command:

kubectl apply -f redis-replica-deployment.yaml

2. Let's check all the resources that have been created now:

kubectl get all

The output would be as shown in Figure 3.11:

Figure 3.11: Deploying the Redis replicas creates a number of new objects

76 | Application deployment on AKS

3. Based on the preceding output, you can see that you created two replicas
of the redis-replica pods. This can be confrmed by examining the redis-
replica- deployment.yaml fle:

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: redis-replica
5 labels:
6 app: redis
7 spec:
8 selector:
9 matchLabels:
10 app: redis
11 role: replica
12 tier: backend
13 replicas: 2
14 template:
15 metadata:
16 labels:
17 app: redis
18 role: replica
19 tier: backend
20 spec:
21 containers:
22 - name: replica
23 image: gcr.io/google-samples/gb-redis-follower:v1
24 resources:
25 requests:
26 cpu: 100m
27 memory: 100Mi
28 env:
29 - name: GET_HOSTS_FROM
30 value: dns
31 ports:
32 - containerPort: 6379

Complete deployment o the sample guestbook application | 77

Everything is the same except or the ollowing:

• Line 13: The number of replicas is 2.

• Line 23: You are now using a specifc replica (ollower) image.

• Lines 29-30: Setting GET_HOSTS_FROM to dns. This is a setting that
specifes that Redis should get the hostname o the master using DNS.

As you can see, this is similar to the Redis master you created earlier.

4. Like the master service, you need to expose the replica service by running the
following:

kubectl apply -f redis-replica-service.yaml

The only dierence between this service and the redis-master service is that
this service proxies trafc to pods that have the role:replica label.

5. Check the redis-replica service by running the ollowing command:

kubectl get service

This should give you the output shown in Figure 3.12:

Figure 3.12: Redis-master and redis-replica service

You now have a Redis cluster up and running, with a single master and two
replicas. In the next section, you will deploy and expose the front end.

Deploying and exposing the front end

Up to now, you have ocused on the Redis back end. Now you are ready to deploy
the ront end. This will add a graphical web page to your application that you'll be
able to interact with.

78 | Application deployment on AKS

You can create the front end using the following command:

kubectl apply -f frontend-deployment.yaml

To veriy the deployment, run this command:

kubectl get pods

This will display the output shown in Figure 3.13:

Figure 3.13: Verifying the front end deployment

You will notice that this deployment specifes 3 replicas. The deployment has the
usual aspects with minor changes, as shown in the following code:

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: frontend
5 labels:
6 app: guestbook
7 spec:
8 selector:
9 matchLabels:
10 app: guestbook
11 tier: frontend
12 replicas: 3
13 template:
14 metadata:
15 labels:
16 app: guestbook
17 tier: frontend
18 spec:
19 containers:
20 - name: php-redis
21 image: gcr.io/google-samples/gb-frontend:v4

Complete deployment o the sample guestbook application | 79

22 resources:
23 requests:
24 cpu: 100m
25 memory: 100Mi
26 env:
27 - name: GET_HOSTS_FROM
28 value: env
29 - name: REDIS_SLAVE_SERVICE_HOST
30 value: redis-replica
31 ports:
32 - containerPort: 80

Let's see these changes:

• Line 11: The replica count is set to 3.

• Line 8-10 and 14-16: The labels are set to app: guestbook and tier:
frontend.

• Line 20: gb-frontend:v4 is used as the image.

You have now created the ront-end deployment. You now need to expose it as a
service.

Exposing the front-end service

There are multiple ways to defne a Kubernetes service. The two Redis services we
created were of the type ClusterIP. This means they are exposed on an IP that is
reachable only from the cluster, as shown in Figure 3.14:

Figure 3.14: Kubernetes service of type ClusterIP

80 | Application deployment on AKS

Another type o service is the type NodePort. A service o type NodePort is accessible
rom outside the cluster, by connecting to the IP o a node and the specifed port.
This service is exposed on a static port on each node as shown in Figure 3.15:

Figure 3.15: Kubernetes service of type NodePort

Complete deployment o the sample guestbook application | 81

A fnal type – which will be used in this example – is the LoadBalancer type. This
will create an Azure Load Balancer that will get a public IP that you can use to
connect to, as shown in Figure 3.16:

Figure 3.16: Kubernetes service of type LoadBalancer

82 | Application deployment on AKS

The ollowing code will help you to understand how the rontend service is
exposed:

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: frontend
5 labels:
6 app: guestbook
7 tier: frontend
8 spec:
9 type: LoadBalancer # line uncommented
10 ports:
11 - port: 80
12 selector:
13 app: guestbook
14 tier: frontend

This defnition is similar to the services you created earlier, except that in line 9
you defned type: Load Balancer. This will create a service o that type, which
will cause AKS to add rules to the Azure load balancer.

Now that you have seen how a ront-end service is exposed, let's make the
guestbook application ready for use with the following steps:

1. To create the service, run the ollowing command:

kubectl create -f frontend-service.yaml

This step takes some time to execute when you run it or the frst time. In the
background, Azure must perform a couple of actions to make it seamless. It has
to create an Azure load balancer and a public IP and set the port-forwarding
rules to orward trafc on port 80 to internal ports of the cluster.

Complete deployment o the sample guestbook application | 83

2. Run the ollowing until there is a value in the EXTERNAL-IP column:

kubectl get service -w

This should display the output shown in Figure 3.17:

Figure 3.17: External IP value

3. In the Azure portal, if you click on All Resources and flter on Load balancer, you
will see a kubernetes Load balancer. Clicking on it shows you something similar
to Figure 3.18. The highlighted sections show you that there is a load balancing
rule accepting trafc on port 80 and you have two public IP addresses:

Figure 3.18: kubernetes Load balancer in the Azure portal

84 | Application deployment on AKS

I you click through on the two public IP addresses, you'll see both IP addresses
linked to your cluster. One of those will be the IP address of your actual front-end
service; the other one is used by AKS to make outbound connections.

Note

Azure has two types o load balancers: basic and standard.
Virtual machines behind a basic load balancer can make outbound
connections without any specic conguration. Virtual machines behind a
standard load balancer (which is the deault or AKS now) need an outbound
rule on the load balancer to make outbound connections. This is why you see
a second IP address congured.

You're fnally ready to see your guestbook app in action!

The guestbook application in action

Type the public IP o the service in your avorite browser. You should get the
output shown in Figure 3.19:

Figure 3.19: The guestbook application in action

Go ahead and record your messages. They will be saved. Open another browser
and type the same IP; you will see all the messages you typed.

Congratulations – you have completed your frst ully deployed, multi-tier,
cloud-native Kubernetes application!

Installing complex Kubernetes applications using Helm | 85

To conserve resources on your ree-trial virtual machines, it is better to delete
the created deployments to run the next round of the deployments by using the
following commands:

kubectl delete deployment frontend redis-master redis-replica
kubectl delete service frontend redis-master redis-replica

Over the course o the preceding sections, you have deployed a Redis cluster and
deployed a publicly accessible web application. You have learned how deployments,
ReplicaSets, and pods are linked, and you have learned how Kubernetes uses the
service object to route network trafc. In the next section o this chapter, you will
use Helm to deploy a more complex application on top o Kubernetes.

Installing complex Kubernetes applications using Helm

In the previous section, you used static YAML fles to deploy an application. When
deploying more complicated applications, across multiple environments (such as
dev/test/prod), it can become cumbersome to manually edit YAML fles or each
environment. This is where the Helm tool comes in.

Helm is the package manager or Kubernetes. Helm helps you deploy, update, and
manage Kubernetes applications at scale. For this, you write something called Helm
Charts.

You can think o Helm Charts as parameterized Kubernetes YAML fles. I you think
about the Kubernetes YAML fles we wrote in the previous section, those fles were
static. You would need to go into the fles and edit them to make changes.

Helm Charts allow you to write YAML fles with certain parameters in them, which
you can dynamically set. This setting of the parameters can be done through a
values fle or as a command-line variable when you deploy the chart.

Finally, with Helm, you don't necessarily have to write Helm Charts yoursel;
you can also use a rich library o pre-written Helm Charts and install popular
software in your cluster through a simple command such as helm install --name
my-release stable/mysql.

86 | Application deployment on AKS

This is exactly what you are going to do in the next section. You will install
WordPress on your cluster by issuing only two commands. In the next chapters,
you'll also dive into custom Helm Charts that you'll edit.

Note

On November 13, 2019, the rst stable release o Helm v3 was released.
We will be using Helm v3 in the ollowing examples. The biggest diference
between Helm v2 and Helm v3 is that Helm v3 is a ully client-side tool that no
longer requires the server-side tool called Tiller.

Let's start by installing WordPress on your cluster using Helm. In this section, you'll
also learn about persistent storage in Kubernetes.

Installing WordPress using Helm

As mentioned in the introduction, Helm has a rich library o pre-written Helm
Charts. To access this library, you'll have to add a repo to your Helm client:

1. Add the repo that contains the stable Helm Charts using the ollowing
command:

helm repo add bitnami \
https://charts.bitnami.com/bitnami

2. To install WordPress, run the following command:

helm install handsonakswp bitnami/wordpress

This execution will cause Helm to install the chart detailed at https://github.
com/bitnami/charts/tree/master/bitnami/wordpress.

It takes some time or Helm to install and the site to come up. Let's look at a key
concept, PersistentVolumeClaims, while the site is loading. Ater covering this,
we'll go back and look at your site that got created.

Installing complex Kubernetes applications using Helm | 87

PersistentVolumeClaims

A typical process requires compute, memory, network, and storage. In the
guestbook example, we saw how Kubernetes helps us abstract the compute,
memory, and network. The same YAML fles work across all cloud providers,
including a cloud-specifc setup o public-acing load balancers. The WordPress
example shows how the last piece, namely storage, is abstracted from the
underlying cloud provider.

In this case, the WordPress Helm Chart depends on the MariaDB helm chart
(https://github.com/bitnami/charts/tree/master/bitnami/mariadb) for its
database installation.

Unlike stateless applications, such as our ront ends, MariaDB requires careul
handling of storage. To make Kubernetes handle stateful workloads, it has a
specifc object called a StatefulSet. A StatefulSet (https://kubernetes.io/docs/
concepts/workloads/controllers/statefulset/) is like a deployment with the
additional capability o ordering, and the uniqueness o the pods. This means that
Kubernetes will ensure that the pod and its storage are kept together. Another way
that StatefulSets help is with the consistent naming of pods in a StatefulSet. The
pods are named <pod-name>-#, where # starts from 0 or the frst pod, and 1 for the
second pod.

Running the ollowing command, you can see that MariaDB has a predictable
number attached to it, whereas the WordPress deployment has a random number
attached to the end:

kubectl get pods

This will generate the output shown in Figure 3.20:

Figure 3.20: Numbers attached to MariaDB and WordPress pods

The numbering reinorces the ephemeral nature o the deployment pods versus the
StatefulSet pods.

88 | Application deployment on AKS

Another difference is how pod deletion is handled. When a deployment pod
is deleted, Kubernetes will launch it again anywhere it can, whereas when
a StatefulSet pod is deleted, Kubernetes will relaunch it only on the node it
was running on. It will relocate the pod only i the node is removed rom the
Kubernetes cluster.

Oten, you will want to attach storage to a StateulSet. To achieve this, a StateulSet
requires a PersistentVolume (PV). This volume can be backed by many mechanisms
(including blocks, such as Azure Blob, EBS, and iSCSI, and network flesystems,
such as AFS, NFS, and GlusterFS). StateulSets require either a pre-provisioned
volume or a dynamically provisioned volume handled by a PersistentVolumeClaim
(PVC). A PVC allows a user to dynamically request storage, which will result in a PV
being created.

Please refer to https://kubernetes.io/docs/concepts/storage/persistent-
volumes/ for more detailed information.

In this WordPress example, you are using a PVC. A PVC provides an abstraction
over the underlying storage mechanism. Let's look at what the MariaDB Helm Chart
did by running the following:

kubectl get statefulset -o yaml > mariadbss.yaml
code mariadbss.yaml

In the preceding command, you got the YAML defnition o the StateulSet that
was created and stored it in a fle called mariadbss.yaml. Let's look at the most
relevant parts o that YAML fle. The code has been truncated to only show the
most relevant parts:

1 apiVersion: v1
2 items:
3 - apiVersion: apps/v1
4 kind: StatefulSet
...
285 volumeMounts:
286 - mountPath: /bitnami/mariadb
287 name: data
...
306 volumeClaimTemplates:
307 - apiVersion: v1
308 kind: PersistentVolumeClaim

Installing complex Kubernetes applications using Helm | 89

309 metadata:
310 creationTimestamp: null
311 labels:
312 app.kubernetes.io/component: primary
313 app.kubernetes.io/instance: handsonakswp
314 app.kubernetes.io/name: mariadb
315 name: data
316 spec:
317 accessModes:
318 - ReadWriteOnce
319 resources:
320 requests:
321 storage: 8Gi
322 volumeMode: Filesystem
...

Most o the elements o the preceding code have been covered earlier in the
deployment. In the following points, we will highlight the key differences, to take a
look at just the PVC:

Note

PVC can be used by any pod, not just StateulSet pods.

Let's discuss the dierent elements o the preceding code in detail:

• Line 4: This line indicates the StatefulSet declaration.

• Lines 285-287: These lines mount the volume defned as data and mount it
under the /bitnami/mariadb path.

• Lines 306-322: These lines declare the PVC. Note specifcally:

• Line 315: This line gives it the name data, which is reused at line 285.

• Line 318: This line gives the access mode ReadWriteOnce, which will
create block storage, which on Azure is a disk. There are other access
modes as well, namely ReadOnlyMany and ReadWriteMany. As the name
suggests, a ReadWriteOnce volume can only be attached to a single pod,
while a ReadOnlyMany or ReadWriteMany volume can be attached to
multiple pods at the same time. These last two types require a dierent
underlying storage mechanism such as Azure Files or Azure Blob.

• Line 321: This line defnes the size o the disk.

90 | Application deployment on AKS

Based on the preceding inormation, Kubernetes dynamically requests and binds
an 8 GiB volume to this pod. In this case, the deault dynamic-storage provisioner
backed by the Azure disk is used. The dynamic provisioner was set up by Azure
when you created the cluster. To see the storage classes available on your cluster,
you can run the following command:

kubectl get storageclass

This will show you an output similar to Figure 3.21:

Figure 3.21: Diferent storage classes in your cluster

We can get more details about the PVC by running the following:

kubectl get pvc

The output generated is displayed in Figure 3.22:

Figure 3.22: Diferent PVCs in the cluster

When we asked for storage in the StatefulSet description (lines 128-143),
Kubernetes perormed Azure-disk-specifc operations to get the Azure disk with 8
GiB o storage. I you copy the name o the PVC and paste that in the Azure search
bar, you should fnd the disk that was created:

Figure 3.23: Getting the disk linked to a PVC

Installing complex Kubernetes applications using Helm | 91

The concept o a PVC abstracts cloud provider storage specifcs. This allows the
same Helm template to work across Azure, AWS, or GCP. On AWS, it will be backed
by Elastic Block Store (EBS), and on GCP it will be backed by Persistent Disk.

Also, note that PVCs can be deployed without using Helm.

In this section, the concept of storage in Kubernetes using PersistentVolumeClaim
(PVC) was introduced. You saw how they were created by the WordPress Helm
deployment, and how Kubernetes created an Azure disk to support the PVC used
by MariaDB. In the next section, you will explore the WordPress application on
Kubernetes in more detail.

Checking the WordPress deployment

Ater our analysis o the PVCs, let's check back in with the Helm deployment. You
can check the status of the deployment using:

helm ls

This should return the output shown in Figure 3.24:

Figure 3.24: WordPress application deployment status

We can get more ino rom our deployment in Helm using the ollowing command:

helm status handsonakswp

92 | Application deployment on AKS

This will return the output shown in Figure 3.25:

Figure 3.25: Getting more details about the deployment

This shows you that your chart was deployed successfully. It also shows more
ino on how you can connect to your site. You won't be using these steps or now;
you will revisit these steps in Chapter 5, Handling common failures in AKS, in
the section where we cover fxing storage mount issues. For now, let's look into
everything that Helm created or you:

kubectl get all

Installing complex Kubernetes applications using Helm | 93

This will generate an output similar to Figure 3.26:

Figure 3.26: List of objects created by Helm

I you don't have an external IP yet, wait or a couple o minutes and retry the
command.

You can then go ahead and connect to your external IP and access your WordPress
site. Figure 3.27 is the resulting output:

Figure 3.27: WordPress site being displayed on connection with the external IP

94 | Application deployment on AKS

To make sure you don't run into issues in the ollowing chapters, let's delete the
WordPress site. This can be done in the following way:

helm delete handsonakswp

By design, the PVCs won't be deleted. This ensures persistent data is kept. As you
don't have any persistent data, you can saely delete the PVCs as well:

kubectl delete pvc --all

Note

Be very careul when executing kubectl delete <object> --all as it will
delete all the objects in a namespace. This is not recommended on a
production cluster.

In this section, you have deployed a ull WordPress site using Helm. You also
learned how Kubernetes handles persistent storage using PVCs.

Summary

In this chapter, you deployed two applications. You started the chapter by
deploying the guestbook application. During that deployment, the details of pods,
ReplicaSets, and deployments were explored. You also used dynamic confguration
using ConfgMaps. Finally, you looked into how services are used to route trafc to
the deployed applications.

The second application you deployed was a WordPress application. You deployed
it via the Helm package manager. As part o this deployment, PVCs were used, and
you explored how they were used in the system and how they were linked to disks
on Azure.

In Chapter 4, Building scalable applications, you will look into scaling applications
and the cluster itsel. You will frst learn about the manual and automatic scaling o
the application, and aterward, you'll learn about the manual and automatic scaling
of the cluster itself. Finally, different ways in which applications can be updated on
Kubernetes will be explained.

4
Building scalable

applications

When running an application efciently, the ability to scale and upgrade your
application is critical. Scaling allows your application to handle additional load.
While upgrading, scaling is needed to keep your application up to date and to
introduce new unctionality.

Scaling on demand is one o the key benefts o using cloud-native applications.
It also helps optimize resources or your application. I the ront end component
encounters heavy load, you can scale the ront end alone, while keeping the
same number o back end instances. You can increase or reduce the number o
virtual machines (VMs) required depending on your workload and peak demand
hours. This chapter will cover the scale dimensions o the application and its
inrastructure in detail.

96 | Building scalable applications

In this chapter, you will learn how to scale the sample guestbook application that
was introduced in Chapter 3, Application deployment on AKS. You will frst scale this
application using manual commands, and aterward you'll learn how to autoscale
it using the Horizontal Pod Autoscaler (HPA). The goal is to make you comortable
with kubectl, which is an important tool or managing applications running on
top of Azure Kubernetes Service (AKS). Ater scaling the application, you will also
scale the cluster. You will frst scale the cluster manually, and then use the cluster
autoscaler to automatically scale the cluster. In addition, you will get a brie
introduction on how you can upgrade applications running on top o AKS.

In this chapter, we will cover the ollowing topics:

• Scaling your application

• Scaling your cluster

• Upgrading your application

Let's begin this chapter by discussing the dierent dimensions o scaling
applications on top o AKS.

Scaling your application

There are two scale dimensions or applications running on top o AKS. The frst
scale dimension is the number o pods a deployment has, while the second scale
dimension in AKS is the number o nodes in the cluster.

By adding new pods to a deployment, also known as scaling out, you can add
additional compute power to the deployed application. You can either scale out
your applications manually or have Kubernetes take care o this automatically via
HPA. HPA can monitor metrics such as the CPU to determine whether pods need to
be added to your deployment.

The second scale dimension in AKS is the number o nodes in the cluster. The
number o nodes in a cluster defnes how much CPU and memory are available or
all the applications running on that cluster. You can scale your cluster manually
by changing the number o nodes, or you can use the cluster autoscaler to
automatically scale out your cluster. The cluster autoscaler watches the cluster

Scaling your application | 97

or pods that cannot be scheduled due to resource constraints. I pods cannot be
scheduled, it will add nodes to the cluster to ensure that your applications can run.

Both scale dimensions will be covered in this chapter. In this section, you will learn
how you can scale your application. First, you will scale your application manually,
and then later, you will scale your application automatically.

Manually scaling your application

To demonstrate manual scaling, let's use the guestbook example that we used in
the previous chapter. Follow these steps to learn how to implement manual scaling:

Note

In the previous chapter, we cloned the example les in Cloud Shell. I you
didn't do this back then, we recommend doing that now:
git clone https://github.com/PacktPublishing/Hands-On-Kubernetes-on-
Azure-third-edition
For this chapter, navigate to the Chapter04 directory:
cd Chapter04

1. Set up the guestbook by running the kubectl create command in the Azure
command line:

kubectl create -f guestbook-all-in-one.yaml

2. Ater you have entered the preceding command, you should see something
similar to what is shown in Figure 4.1 in your command-line output:

Figure 4.1: Launching the guestbook application

3. Right now, none o the services are publicly accessible. We can veriy this by
running the ollowing command:

kubectl get service

98 | Building scalable applications

4. As seen in Figure 4.2, none o the services have an external IP:

Figure 4.2: Output conrming that none o the services have a public IP

5. To test the application, you will need to expose it publicly. For this, let's
introduce a new command that will allow you to edit the service in Kubernetes
without having to change the fle on your fle system. To start the edit, execute
the ollowing command:

kubectl edit service frontend

6. This will open a vi environment. Use the down arrow key to navigate to the
line that says type: ClusterIP and change that to type: LoadBalancer, as
shown in Figure 4.3. To make that change, hit the I button, change type to
LoadBalancer, hit the Esc button, type :wq!, and then hit Enter to save the
changes:

Figure 4.3: Changing this line to type: LoadBalancer

Scaling your application | 99

7. Once the changes are saved, you can watch the service object until the public
IP becomes available. To do this, type the ollowing:

kubectl get service -w

8. It will take a couple o minutes to show you the updated IP. Once you see the
correct public IP, you can exit the watch command by hitting Ctrl + C:

Figure 4.4: Output showing the front-end service getting a public IP

9. Type the IP address rom the preceding output into your browser navigation
bar as ollows: http://<EXTERNAL-IP>/. The result o this is shown in
Figure 4.5:

Figure 4.5: Browse to the guestbook application

The amiliar guestbook sample should be visible. This shows that you have
successully publicly accessed the guestbook.

Now that you have the guestbook application deployed, you can start scaling the
dierent components o the application.

100 | Building scalable applications

Scaling the guestbook front-end component

Kubernetes gives us the ability to scale each component o an application
dynamically. In this section, we will show you how to scale the ront end o the
guestbook application. Right now, the ront-end deployment is deployed with three
replicas. You can confrm by using the ollowing command:

kubectl get pods

This should return an output as shown in Figure 4.6:

Figure 4.6: Conrming the three replicas in the ront-end deployment

To scale the ront-end deployment, you can execute the ollowing command:

kubectl scale deployment/frontend --replicas=6

This will cause Kubernetes to add additional pods to the deployment. You can set
the number o replicas you want, and Kubernetes takes care o the rest. You can
even scale it down to zero (one o the tricks used to reload the confguration when
the application doesn't support the dynamic reload o confguration). To veriy that
the overall scaling worked correctly, you can use the ollowing command:

kubectl get pods

Scaling your application | 101

This should give you the output shown in Figure 4.7:

Figure 4.7: Diferent pods running in the guestbook application ater scaling out

As you can see, the ront-end service scaled to six pods. Kubernetes also spread
these pods across multiple nodes in the cluster. You can see the nodes that this is
running on with the ollowing command:

kubectl get pods -o wide

This will generate the ollowing output:

Figure 4.8: Showing which nodes the pods are running on

In this section, you have seen how easy it is to scale pods with Kubernetes. This
capability provides a very powerul tool or you to not only dynamically adjust
your application components but also provide resilient applications with ailover
capabilities enabled by running multiple instances o components at the same time.
However, you won't always want to manually scale your application. In the next
section, you will learn how you can automatically scale your application in and out
by automatically adding and removing pods in a deployment.

102 | Building scalable applications

Using the HPA

Scaling manually is useul when you're working on your cluster. For example, i you
know your load is going to increase, you can manually scale out your application.
In most cases, however, you will want some sort o autoscaling to happen on your
application. In Kubernetes, you can confgure autoscaling o your deployment using
an object called the Horizontal Pod Autoscaler (HPA).

HPA monitors Kubernetes metrics at regular intervals and, based on the rules you
defne, it automatically scales your deployment. For example, you can confgure the
HPA to add additional pods to your deployment once the CPU utilization o your
application is above 50%.

In this section, you will confgure the HPA to scale the ront-end o the application
automatically:

1. To start the confguration, let's frst manually scale down our deployment to
one instance:

kubectl scale deployment/frontend --replicas=1

2. Next up, we'll create an HPA. Open up the code editor in Cloud Shell by typing
code hpa.yaml and enter the ollowing code:

1 apiVersion: autoscaling/v1
2 kind: HorizontalPodAutoscaler
3 metadata:
4 name: frontend-scaler
5 spec:
6 scaleTargetRef:
7 apiVersion: apps/v1
8 kind: Deployment
9 name: frontend
10 minReplicas: 1
11 maxReplicas: 10
12 targetCPUUtilizationPercentage: 50

Scaling your application | 103

Let's investigate what is confgured in this fle:

• Line 2: Here, we defne that we need HorizontalPodAutoscaler.

• Lines 6-9: These lines defne the deployment that we want to autoscale.

• Lines 10-11: Here, we confgure the minimum and maximum pods in our
deployment.

• Lines 12: Here, we defne the target CPU utilization percentage or our
deployment.

3. Save this fle, and create the HPA using the ollowing command:

kubectl create -f hpa.yaml

This will create our autoscaler. You can see your autoscaler with the ollowing
command:

kubectl get hpa

This will initially output something as shown in Figure 4.9:

Figure 4.9: The target unknown shows that the HPA isn't ready yet

It takes a couple o seconds or the HPA to read the metrics. Wait or the return
rom the HPA to look something similar to the output shown in Figure 4.10:

Figure 4.10: Once the target shows a percentage, the HPA is ready

4. You will now go ahead and do two things: frst, you will watch the pods to see
whether new pods are created. Then, you will create a new shell, and create
some load or the system. Let's start with the frst task—watching our pods:

kubectl get pods -w

104 | Building scalable applications

This will continuously monitor the pods that get created or terminated.

Let's now create some load in a new shell. In Cloud Shell, hit the open new
session icon to open a new shell:

Figure 4.11: Use this button to open a new Cloud Shell

This will open a new tab in your browser with a new session in Cloud Shell. You
will generate load or the application rom this tab.

5. Next, you will use a program called hey to generate this load. hey is a tiny
program that sends loads to a web application. You can install and run hey
using the ollowing commands:

export GOPATH=~/go
export PATH=$GOPATH/bin:$PATH
go get -u github.com/rakyll/hey
hey -z 20m http://<external-ip>

The hey program will now try to create up to 20 million connections to the
ront-end. This will generate CPU loads on the system, which will trigger the
HPA to start scaling the deployment. It will take a couple o minutes or this to
trigger a scale action, but at a certain point, you should see multiple pods being
created to handle the additional load, as shown in Figure 4.12:

Scaling your application | 105

Figure 4.12: New pods get started by the HPA

At this point, you can go ahead and kill the hey program by hitting Ctrl + C.

6. Let's have a closer look at what the HPA did by running the ollowing command:

kubectl describe hpa

We can see a ew interesting points in the describe operation, as shown in
Figure 4.13:

Figure 4.13: Detailed view of the HPA

106 | Building scalable applications

The annotations in Figure 4.13 are explained as ollows:

• This shows you the current CPU utilization (384%) versus the desired
(50%). The current CPU utilization will likely be dierent in your
situation.

• This shows you that the current desired replica count is higher than
the actual maximum you had confgured. This ensures that a single
deployment doesn't consume all resources in the cluster.

• This shows you the scaling actions that the HPA took. It frst scaled to 4,
then to 8, and then to 10 pods in the deployment.

7. I you wait or a couple o minutes, the HPA should start to scale down. You can
track this scale-down operation using the ollowing command:

kubectl get hpa -w

This will track the HPA and show you the gradual scaling down o the
deployment, as displayed in Figure 4.14:

Figure 4.14: Watching the HPA scale down

8. Beore we move on to the next section, let's clean up the resources we created
in this section:

kubectl delete -f hpa.yaml
kubectl delete -f guestbook-all-in-one.yaml

In this section, you frst manually and then automatically scaled an application.
However, the inrastructure supporting the application was static; you ran this
on a two-node cluster. In many cases, you might also run out o resources on the
cluster. In the next section, you will deal with this issue and learn how you can
scale the AKS cluster yoursel.

Scaling your cluster | 107

Scaling your cluster

In the previous section, you dealt with scaling the application running on top
o a cluster. In this section, you'll learn how you can scale the actual cluster you
are running. First, you will manually scale your cluster to one node. Then, you'll
confgure the cluster autoscaler. The cluster autoscaler will monitor your cluster
and scale out when there are pods that cannot be scheduled on the cluster.

Manually scaling your cluster

You can manually scale your AKS cluster by setting a static number o nodes or the
cluster. The scaling o your cluster can be done either via the Azure portal or the
command line.

In this section, you'll learn how you can manually scale your cluster by scaling
it down to one node. This will cause Azure to remove one o the nodes rom
your cluster. First, the workload on the node that is about to be removed will be
rescheduled onto the other node. Once the workload is saely rescheduled, the node
will be removed rom your cluster, and then the VM will be deleted rom Azure.

To scale your cluster, ollow these steps:

1. Open the Azure portal and go to your cluster. Once there, go to Node pools and
click on the number below Node count, as shown in Figure 4.15:

Figure 4.15: Manually scaling the cluster

108 | Building scalable applications

2. This will open a pop-up window that will give the option to scale your cluster.
For our example, we will scale down our cluster to one node, as shown in
Figure 4.16:

Figure 4.16: Pop-up window conrming the new cluster size

3. Hit the Apply button at the bottom o the screen to save these settings. This
will cause Azure to remove a node rom your cluster. This process will take
about 5 minutes to complete. You can ollow the progress by clicking on the
notifcation icon at the top o the Azure portal as ollows:

Figure 4.17: Cluster scaling can be ollowed using the notications in the Azure portal

Scaling your cluster | 109

Once this scale-down operation has completed, relaunch the guestbook
application on this small cluster:

kubectl create -f guestbook-all-in-one.yaml

In the next section, you will scale out the guestbook so that it can no longer run
on this small cluster. You will then confgure the cluster autoscaler to scale out the
cluster.

Scaling your cluster using the cluster autoscaler

In this section, you will explore the cluster autoscaler. The cluster autoscaler
will monitor the deployments in your cluster and scale your cluster to meet your
application requirements. The cluster autoscaler watches the number o pods in
your cluster that cannot be scheduled due to insufcient resources. You will frst
orce your deployment to have pods that cannot be scheduled, and then confgure
the cluster autoscaler to automatically scale your cluster.

To orce your cluster to be out o resources, you will—manually—scale out the
redis-replica deployment. To do this, use the ollowing command:

kubectl scale deployment redis-replica --replicas 5

You can veriy that this command was successul by looking at the pods in our
cluster:

kubectl get pods

This should show you something similar to the output shown in Figure 4.18:

Figure 4.18: Four out o ve pods are pending, meaning they cannot be scheduled

110 | Building scalable applications

As you can see, you now have two pods in a Pending state. The Pending state in
Kubernetes means that that pod cannot be scheduled onto a node. In this case, this
is due to the cluster being out o resources.

Note

I your cluster is running on a larger VM size than the DS2v2, you might not
notice pods in a Pending state now. In that case, increase the number o
replicas to a higher number until you see pods in a pending state.

You will now confgure the cluster autoscaler to automatically scale the cluster.
Similar to manual scaling in the previous section, there are two ways you can
confgure the cluster autoscaler. You can confgure it either via the Azure portal—
similar to how we did the manual scaling—or you can confgure it using the
command-line interface (CLI). In this example, you will use CLI to enable the
cluster autoscaler. The ollowing command will confgure the cluster autoscaler or
your cluster:

az aks nodepool update --enable-cluster-autoscaler \
-g rg-handsonaks --cluster-name handsonaks \
--name agentpool --min-count 1 --max-count 2

This command confgures the cluster autoscaler on the node pool you have in the
cluster. It confgures it to have a minimum o one node and a maximum o two
nodes. This will take a couple o minutes to confgure.

Once the cluster autoscaler is confgured, you can see it in action by using the
ollowing command to watch the number o nodes in the cluster:

kubectl get nodes -w

It will take about 5 minutes or the new node to show up and become Ready in the
cluster. Once the new node is Ready, you can stop watching the nodes by hitting
Ctrl + C. You should see an output similar to what you see in Figure 4.19:

Scaling your cluster | 111

Figure 4.19: The new node joins the cluster

The new node should ensure that your cluster has sufcient resources to schedule
the scaled-out redis- replica deployment. To veriy this, run the ollowing
command to check the status o the pods:

kubectl get pods

This should show you all the pods in a Running state as ollows:

Figure 4.20: All pods are now in a Running state

112 | Building scalable applications

Now clean up the resources you created, disable the cluster autoscaler, and ensure
that your cluster has two nodes or the next example. To do this, use the ollowing
commands:

kubectl delete -f guestbook-all-in-one.yaml
az aks nodepool update --disable-cluster-autoscaler \
-g rg-handsonaks --cluster-name handsonaks --name agentpool

az aks nodepool scale --node-count 2 -g rg-handsonaks \
--cluster-name handsonaks --name agentpool

Note

The last command rom the previous example will show you an error
message, The new node count is the same as the current node
count., i the cluster already has two nodes. You can saely ignore this error.

In this section, you frst manually scaled down your cluster and then used the
cluster autoscaler to scale out your cluster. You used the Azure portal to scale
down the cluster manually and then used the Azure CLI to confgure the cluster
autoscaler. In the next section, you will look into how you can upgrade applications
running on AKS.

Upgrading your application

Using deployments in Kubernetes makes upgrading an application a
straightorward operation. As with any upgrade, you should have good ailbacks
in case something goes wrong. Most o the issues you will run into will happen
during upgrades. Cloud-native applications are supposed to make dealing with this
relatively easy, which is possible i you have a very strong development team that
embraces DevOps principles.

The State o DevOps report (https://puppet.com/resources/report/2020-state-
o-devops-report/) has reported or multiple years that companies that have
high sotware deployment requency rates have higher availability and stability
in their applications as well. This might seem counterintuitive, as doing sotware
deployments heightens the risk o issues. However, by deploying more requently
and deploying using automated DevOps practices, you can limit the impact o
sotware deployment.

Upgrading your application | 113

There are multiple ways you can make updates to applications running in a
Kubernetes cluster. In this section, you will explore the ollowing ways to update
Kubernetes resources:

• Upgrading by changing YAML fles: This method is useul when you have
access to the ull YAML fle required to make the update. This can be done
either rom your command line or rom an automated system.

• Upgrading using kubectl edit: This method is mostly used or minor
changes on a cluster. It is a quick way to update your confguration live on
a cluster.

• Upgrading using kubectl patch: This method is useul when you need to
script a particular small update to a Kubernetes but don't have access to the
ull YAML fle. It can be done either rom a command line or an automated
system. I you have access to the original YAML fles, it is typically better to
edit the YAML fle and use kubectl apply to apply the updates.

• Upgrading using Helm: This method is used when your application is
deployed through Helm.

The methods described in the ollowing sections work great i you have stateless
applications. I you have a state stored anywhere, make sure to back up that state
beore you try upgrading your application.

Let's start this section by doing the frst type o upgrade by changing YAML fles.

Upgrading by changing YAML les

In order to upgrade a Kubernetes service or deployment, you can update the actual
YAML defnition fle and apply that to the currently deployed application. Typically,
we use kubectl create to create resources. Similarly, we can use kubectl apply
to make changes to the resources.

The deployment detects the changes (i any) and matches the running state to the
desired state. Let's see how this is done:

1. Start with our guestbook application to explore this example:

kubectl apply -f guestbook-all-in-one.yaml

114 | Building scalable applications

2. Ater a ew minutes, all the pods should be running. Let's perorm the frst
upgrade by changing the service rom ClusterIP to LoadBalancer, as you did
earlier in the chapter. However, now you will edit the YAML fle rather than
using kubectl edit. Edit the YAML fle using the ollowing command:

code guestbook-all-in-one.yaml

Uncomment line 102 in this fle to set the type to LoadBalancer, and save the
fle, as shown in Figure 4.21:

Figure 4.21: Setting the type to LoadBalancer in the guestbook-all-in-one YAML le

3. Apply the change as shown in the ollowing code:

kubectl apply -f guestbook-all-in-one.yaml

You should see an output similar to Figure 4.22:

Figure 4.22: The service's front-end is updated

As you can see in Figure 4.22, only the object that was updated in the YAML fle,
which is the service in this case, was updated on Kubernetes, and the other
objects remained unchanged.

4. You can now get the public IP o the service using the ollowing command:

kubectl get service

Upgrading your application | 115

Give it a ew minutes, and you should be shown the IP, as displayed in Figure 4.23:

Figure 4.23: Output displaying a public IP

5. You will now make another change. You'll downgrade the ront-end image
on line 127 rom image: gcr.io/google-samples/gb-frontend:v4 to the
ollowing:

image: gcr.io/google-samples/gb-frontend:v3

This change can be made by opening the guestbook application in the editor by
using this amiliar command:

code guestbook-all-in-one.yaml

6. Run the ollowing command to perorm the update and watch the pods change:

kubectl apply -f guestbook-all-in-one.yaml && kubectl get pods -w

This will generate an output similar to Figure 4.24:

Figure 4.24: Pods from a new ReplicaSet are created

116 | Building scalable applications

What you can see here is that a new version o the pod gets created (based on
a new ReplicaSet). Once the new pod is running and ready, one o the old pods
is terminated. This create-terminate loop is repeated until only new pods are
running. In Chapter 5, Handling common failures in AKS, you'll see an example
o such an upgrade gone wrong and you'll see that Kubernetes will not continue
with the upgrade process until the new pods are healthy.

7. Running kubectl get events | grep ReplicaSet will show the rolling update
strategy that the deployment uses to update the ront-end images:

Figure 4.25: Monitoring Kubernetes events and ltering to only see ReplicaSet-related events

Note

In the preceding example, you are making use o a pipe—shown by the |
sign—and the grep command. A pipe in Linux is used to send the output o
one command to the input o another command. In this case, you sent the
output o kubectl get events to the grep command. Linux uses the grep
command to lter text. In this case, you used the grep command to only
show lines that contain the word ReplicaSet.

You can see here that the new ReplicaSet gets scaled up, while the old one gets
scaled down. You will also see two ReplicaSets or the ront-end, the new one
replacing the other one pod at a time:

kubectl get replicaset

This will display the output shown in Figure 4.26:

Figure 4.26: Two diferent ReplicaSets

Upgrading your application | 117

8. Kubernetes will also keep a history o your rollout. You can see the rollout
history using this command:

kubectl rollout history deployment frontend

This will generate the output shown in Figure 4.27:

Figure 4.27: Deployment history of the application

9. Since Kubernetes keeps a history o the rollout, this also enables rollback. Let's
do a rollback o your deployment:

kubectl rollout undo deployment frontend

This will trigger a rollback. This means that the new ReplicaSet will be scaled
down to zero instances, and the old one will be scaled up to three instances
again. You can veriy this using the ollowing command:

kubectl get replicaset

The resultant output is as shown in Figure 4.28:

Figure 4.28: The old ReplicaSet now has three pods, and the new one is scaled down to zero

This shows you, as expected, that the old ReplicaSet is scaled back to three
instances and the new one is scaled down to zero instances.

10. Finally, let's clean up again by running the kubectl delete command:

kubectl delete -f guestbook-all-in-one.yaml

Congratulations! You have completed the upgrade o an application and a
rollback to a previous version.

118 | Building scalable applications

In this example, you have used kubectl apply to make changes to your
application. You can similarly also use kubectl edit to make changes, which will
be explored in the next section.

Upgrading an application using kubectl edit

You can also make changes to your application running on top o Kubernetes by
using kubectl edit. You used this previously in this chapter, in the Manually
scaling your application section. When running kubectl edit, the vi editor will be
opened or you, which will allow you to make changes directly against the object in
Kubernetes.

Let's redeploy the guestbook application without a public load balancer and use
kubectl to create the load balancer:

1. Undo the changes you made in the previous step. You can do this by using the
ollowing command:

git reset --hard

2. You will then deploy the guestbook application:

kubectl create -f guestbook-all-in-one.yaml

3. To start the edit, execute the ollowing command:

kubectl edit service frontend

4. This will open a vi environment. Navigate to the line that now says type:
ClusterIP (line 27) and change that to type: LoadBalancer, as shown in
Figure 4.29. To make that change, hit the I button, type your changes, hit the
Esc button, type :wq!, and then hit Enter to save the changes:

Upgrading your application | 119

Figure 4.29: Changing this line to type: LoadBalancer

5. Once the changes are saved, you can watch the service object until the public
IP becomes available. To do this, type the ollowing:

kubectl get svc -w

6. It will take a couple o minutes to show you the updated IP. Once you see the
right public IP, you can exit the watch command by hitting Ctrl + C.

This is an example o using kubectl edit to make changes to a Kubernetes object.
This command will open up a text editor to interactively make changes. This means
that you need to interact with the text editor to make the changes. This will not
work in an automated environment. To make automated changes, you can use the
kubectl patch command.

Upgrading an application using kubectl patch

In the previous example, you used a text editor to make the changes to Kubernetes.
In this example, you will use the kubectl patch command to make changes to
resources on Kubernetes. The patch command is particularly useul in automated
systems when you don't have access to the original YAML fle that is deployed on
a cluster. It can be used, or example, in a script or in a continuous integration/
continuous deployment system.

120 | Building scalable applications

There are two main ways in which to use kubectl patch: either by creating a fle
containing your changes (called a patch fle) or by providing the changes inline.
Both approaches will be explained here. First, in this example, you'll change the
image o the ront-end rom v4 to v3 using a patch fle:

1. Start this example by creating a fle called frontend-image-patch.yaml:

code frontend-image-patch.yaml

2. Use the ollowing text as a patch in that fle:

spec:
template:
spec:
containers:
- name: php-redis
image: gcr.io/google-samples/gb-frontend:v3

This patch fle uses the same YAML layout as a typical YAML fle. The main
thing about a patch fle is that it only has to contain the changes and doesn't
have to be capable o deploying the whole resource.

3. To apply the patch, use the ollowing command:

kubectl patch deployment frontend \
--patch "$(cat frontend-image-patch.yaml)"

This command does two things: frst, it reads the frontend-image-patch.
yaml fle using the cat command, and then it passes that to the kubectl patch
command to execute the change.

4. You can veriy the changes by describing the ront-end deployment and
looking or the Image section:

kubectl describe deployment frontend

Upgrading your application | 121

This will display an output as ollows:

Figure 4.30: After the patch, we are running the old image

This was an example o using the patch command using a patch fle. You can also
apply a patch directly on the command line without creating a YAML fle. In this
case, you would describe the change in JSON rather than in YAML.

Let's run through an example in which we will revert the image change to v4:

5. Run the ollowing command to patch the image back to v4:

kubectl patch deployment frontend \
--patch='
{

"spec": {
"template": {

"spec": {
"containers": [{

"name": "php-redis",
"image": "gcr.io/google-samples/gb-frontend:v4"

}]
}

}
}

}
'

122 | Building scalable applications

6. You can veriy this change by describing the deployment and looking or the
Image section:

kubectl describe deployment frontend

This will display the output shown in Figure 4.31:

Figure 4.31: After another patch, we are running the new version again

Beore moving on to the next example, let's remove the guestbook application rom
the cluster:

kubectl delete -f guestbook-all-in-one.yaml

So ar, you have explored three ways o upgrading Kubernetes applications. First,
you made changes to the actual YAML fle and applied them using kubectl apply.
Aterward, you used kubectl edit and kubectl patch to make more changes. In
the fnal section o this chapter, you will use Helm to upgrade an application.

Upgrading applications using Helm

This section will explain how to perorm upgrades using Helm operators:

1. Run the ollowing command:

helm install wp bitnami/wordpress

You will orce an update o the image o the MariaDB container. Let's frst
check the version o the current image:

kubectl describe statefulset wp-mariadb | grep Image

Upgrading your application | 123

At the time o writing, the image version is 10.5.8-debian-10-r46 as ollows:

Figure 4.32: Getting the current image of the StatefulSet

Let's look at the tags rom https://hub.docker.com/r/bitnami/mariadb/tags
and select another tag. For example, you could select the 10.5.8-debian-
10-r44 tag to update your StateulSet.

However, in order to update the MariaDB container image, you need to get
the root password or the server and the password or the database. This is
because the WordPress application is confgured to use these passwords to
connect to the database. By deault, the update using Helm on the WordPress
deployment would generate new passwords. In this case, you'll be providing the
existing passwords, to ensure the application remains unctional.

The passwords are stored in a Kubernetes Secret object. Secrets will be
explained in more depth in Chapter 10, Storing secrets in AKS. You can get the
MariaDB passwords in the ollowing way:

kubectl get secret wp-mariadb -o yaml

This will generate the output shown in Figure 4.33:

Figure 4.33: The encrypted secrets that MariaDB uses

124 | Building scalable applications

In order to get the decoded password, use the ollowing command:

echo "<password>" | base64 -d

This will show us the decoded root password and the decoded database
password, as shown in Figure 4.34:

Figure 4.34: The decoded root and database passwords

You also need the WordPress password. You can get that by getting the
wp-wordpress secret and using the same decoding process:

kubectl get secret wp-wordpress -o yaml
echo "<WordPress password>" | base64 -d

2. You can update the image tag with Helm and then watch the pods change using
the ollowing command:

helm upgrade wp bitnami/wordpress \
--set mariadb.image.tag=10.5.8-debian-10-r44\
--set mariadb.auth.password="<decoded password>" \
--set mariadb.auth.rootPassword="<decoded password>" \
--set wordpressPassword="<decoded password>" \
&& kubectl get pods -w

This will update the image o MariaDB and make a new pod start. You should
see an output similar to Figure 4.35, where you can see the previous version o
the database pod being terminated, and a new one start:

Upgrading your application | 125

Figure 4.35: The previous MariaDB pod gets terminated and a new one starts

Running describe on the new pod and grepping or Image will show us the new
image version:

kubectl describe pod wp-mariadb-0 | grep Image

This will generate an output as shown in Figure 4.36:

Figure 4.36: Showing the new image

3. Finally, clean up by running the ollowing command:

helm delete wp
kubectl delete pvc --all
kubectl delete pv --all

You have now learned how to upgrade an application using Helm. As you have seen
in this example, upgrading using Helm can be done by using the --set operator.
This makes perorming upgrades and multiple deployments using Helm efcient.

126 | Building scalable applications

Summary

This a chapter covered a plethora o inormation on building scalable applications.
The goal was to show you how to scale deployments with Kubernetes, which was
achieved by creating multiple instances o your application.

We started the chapter by looking at how to defne the use o a load balancer and
leverage the deployment scale eature in Kubernetes to achieve scalability. With
this type o scalability, you can also achieve ailover by using a load balancer and
multiple instances o the sotware or stateless applications. We also looked into
using the HPA to automatically scale your deployment based on load.

Ater that, we looked at how you can scale the cluster itsel. First, we manually
scaled the cluster, and aterward we used a cluster autoscaler to scale the cluster
based on application demand.

We fnished the chapter by looking into dierent ways to upgrade a deployed
application: frst, by exploring updating YAML fles manually, and then by learning
two additional kubectl commands (edit and patch) that can be used to make
changes. Finally, we learned how Helm can be used to perorm these upgrades.

In the next chapter, we will look at a couple o common ailures that you may ace
while deploying applications to AKS and how to fx them.

5
Handling common

failures in AKS
Kubernetes is a distributed system with many working parts. AKS abstracts
most of it for you, but it is still your responsibility to know where to look and
how to respond when bad things happen. Much of the failure handling is done
automatically by Kubernetes; however, you will encounter situations where manual
intervention is required.

There are two areas where things can go wrong in an application that is deployed
on top of AKS. Either the cluster itself has issues, or the application deployed on
top o the cluster has issues. This chapter ocuses specically on cluster issues.
There are several things that can go wrong with a cluster.

The rst thing that can go wrong is a node in the cluster can become unavailable.
This can happen either due to an Azure infrastructure outage or due to an issue
with the virtual machine itself, such as an operating system crash. Either way,
Kubernetes monitors the cluster for node failures and will recover automatically.
You will see this process in action in this chapter.

128 | Handling common ailures in AKS

A second common issue in a Kubernetes cluster is out-of-resource failures. This
means that the workload you are trying to deploy requires more resources than are
available on your cluster. You will learn how to monitor these signals and how you
can solve them.

Another common issue is problems with mounting storage, which happens when
a node becomes unavailable. When a node in Kubernetes becomes unavailable,
Kubernetes will not detach the disks attached to this failed node. This means that
those disks cannot be used by workloads on other nodes. You will see a practical
example of this and learn how to recover from this failure.

We will look into the following topics in depth in this chapter:

• Handling node failures

• Solving out-of-resource failures

• Handling storage mount issues

In this chapter, you will learn about common failure scenarios, as well as solutions
to those scenarios. To start, we will introduce node failures.

Note:

Reer to Kubernetes the Hard Way (https://github.com/kelseyhightower/
kubernetes-the-hard-way), an excellent tutorial, to get an idea about
the blocks on which Kubernetes is built. For the Azure version, reer
to Kubernetes the Hard Way – Azure Translation (https://github.com/
ivanoravanti/kubernetes-the-hard-way-on-azure).

Handling node failures

Intentionally (to save costs) or unintentionally, nodes can go down. When that
happens, you don't want to get the proverbial 3 a.m. call that your system is down.
Kubernetes can handle moving workloads on failed nodes automatically for you
instead. In this exercise, you are going to deploy the guestbook application and
bring a node down in your cluster to see what Kubernetes does in response:

Handling node ailures | 129

1. Ensure that your cluster has at least two nodes:

kubectl get nodes

This should generate an output as shown in Figure 5.1:

Figure 5.1: List of nodes in the cluster

If you don't have two nodes in your cluster, look for your cluster in the Azure
portal, navigate to Node pools, select the pool you wish to scale, and click on
Scale. You can then scale Node count to 2 nodes as shown in Figure 5.2:

Figure 5.2: Scaling the cluster

2. As an example application in this section, deploy the guestbook application.
The YAML le to deploy this has been provided in the source code or this
chapter (guestbook-all-in-one.yaml). To deploy the guestbook application,
use the following command:

kubectl create -f guestbook-all-in-one.yaml

130 | Handling common ailures in AKS

3. Watch the service object until the public IP becomes available. To do this, type
the following:

kubectl get service -w

Note

You can also get services in Kubernetes by using kubectl get svc rather
than the ull kubectl get service.

4. This will take a couple of seconds to show you the updated external IP.
Figure 5.3 shows the service's public IP. Once you see the public IP appear
(20.72.244.113 in this case), you can exit the watch command by hitting Ctrl + C:

Figure 5.3: The external IP of the frontend service changes from <pending> to an actual IP address

5. Go to http://<EXTERNAL-IP> (http://20.72.244.113 in this case) as shown in
Figure 5.4:

Figure 5.4: Browsing to the guestbook application

6. Let's see where the pods are currently running using the following command:

kubectl get pods -o wide

Handling node ailures | 131

This will generate an output as shown in Figure 5.5:

Figure 5.5: The pods are spread between node 0 and node 2

This shows you that you should have the workload spread between node 0 and
node 2.

Note

In the example shown in Figure 5.5, the workload is spread between nodes
0 and 2. You might notice that node 1 is missing here. I you ollowed the
example in Chapter 4, Building scalable applications, your cluster should be in a
similar state. The reason or this is that as Azure removes old nodes and adds
new nodes to a cluster (as you did in Chapter 4, Building scalable applications),
it keeps incrementing the node counter.

7. Before introducing the node failures, there are two optional steps you can
take to verify whether your application can continue to run. You can run the
following command to hit the guestbook front end every 5 seconds and get the
HTML. It's recommended to open this in a new Cloud Shell window:

while true; do
curl -m 1 http://<EXTERNAl-IP>/;
sleep 5;

done

Note

The preceding command will keep calling your application till you press
Ctrl + C. There might be intermittent times where you don't get a reply,
which is to be expected as Kubernetes takes a couple o minutes to rebalance
the system.

132 | Handling common ailures in AKS

You can also add some guestbook entries to see what happens to them when
you cause the node to shut down. This will display an output as shown in
Figure 5.6:

Figure 5.6: Writing a couple of messages in the guestbook

8. In this example, you are exploring how Kubernetes handles a node failure. To
demonstrate this, shut down a node in the cluster. You can shut down either
node, although for maximum impact it is recommended you shut down the
node from step 6 that hosted the most pods. In the case of the example shown,
node 2 will be shut down.

To shut down this node, look for VMSS (virtual machine scale sets) in the
Azure search bar, and select the scale set used by your cluster, as shown in
Figure 5.7. If you have multiple scale sets in your subscription, select the one
whose name corresponds to the node names shown in Figure 5.5:

Handling node ailures | 133

Figure 5.7: Looking for the scale set hosting your cluster

After navigating to the pane of the scale set, go to the Instances view, select
the instance you want to shut down, and then hit the Stop button, as shown in
Figure 5.8:

Figure 5.8: Shutting down node 2

134 | Handling common ailures in AKS

This will shut down the node. To see how Kubernetes will react with your pods,
you can watch the pods in your cluster via the following command:

kubectl get pods -o wide -w

After a while, you should notice additional output, showing you that the pods
got rescheduled on the healthy host, as shown in Figure 5.9:

Figure 5.9: The pods from the failed node getting recreated on a healthy node

What you see here is the following:

• The Redis master pod running on node 2 got terminated as the host
became unhealthy.

• A new Redis master pod got created, on host 0. This went through the
stages Pending, ContainerCreating, and then Running.

Note

In the preceding example, Kubernetes picked up that the host was unhealthy
beore it rescheduled the pods. I you were to do kubectl get nodes,
you would see node 2 is in a NotReady state. There is a conguration in
Kubernetes called pod-eviction-timeout that denes how long the system will
wait to reschedule pods on a healthy host. The deault is 5 minutes.

Solving out-o-resource ailures | 135

9. If you recorded a number of messages in the guestbook during step 7, browse
back to the guestbook application on its public IP. What you can see is that
all your precious messages are gone! This shows the importance of having
PersistentVolumeClaims (PVCs) for any data that you want to survive in the
case of a node failure, which is not the case in our application here. You will see
an example of this in the last section of this chapter.

In this section, you learned how Kubernetes automatically handles node failures by
recreating pods on healthy nodes. In the next section, you will learn how you can
diagnose and solve out-of-resource issues.

Solving out-of-resource failures

Another common issue that can come up with Kubernetes clusters is the cluster
running out of resources. When the cluster doesn't have enough CPU power or
memory to schedule additional pods, pods will become stuck in a Pending state.
You have seen this behavior in Chapter 4, Building scalable applications, as well.

Kubernetes uses requests to calculate how much CPU power or memory a
certain pod requires. The guestbook application has requests dened or all the
deployments. If you open the guestbook-all-in-one.yaml le in the older
Chapter05, you'll see the following for the redis-replica deployment:

63 kind: Deployment
64 metadata:
65 name: redis-replica
...
83 resources:
84 requests:
85 cpu: 200m
86 memory: 100Mi

This section explains that every pod for the redis-replica deployment requires
200m of a CPU core (200milli or 20%) and 100MiB (Mebibyte) of memory. In your 2
CPU clusters (with node 1 shut down), scaling this to 10 pods will cause issues with
the available resources. Let's look into this:

136 | Handling common ailures in AKS

Note

In Kubernetes, you can use either the binary prex notation or the base 10
notation to speciy memory and storage. Binary prex notation means using
KiB (kibibyte) to represent 1,024 bytes, MiB (mebibyte) to represent 1,024 KiB,
and Gib (gibibyte) to represent 1,024 MiB. Base 10 notation means using kB
(kilobyte) to represent 1,000 bytes, MB (megabyte) to represent 1,000 kB, and
GB (gigabyte) represents 1,000 MB.

1. Let's start by scaling the redis-replica deployment to 10 pods:

kubectl scale deployment/redis-replica --replicas=10

2. This will cause a couple of new pods to be created. We can check our pods
using the following:

kubectl get pods

This will generate an output as shown in Figure 5.10:

Figure 5.10: Some pods are in the Pending state

Highlighted here is one of the pods that are in the Pending state. This occurs if
the cluster is out of resources.

Solving out-o-resource ailures | 137

3. We can get more information about these pending pods using the following
command:

kubectl describe pod redis-replica-<pod-id>

This will show you more details. At the bottom of the describe command, you
should see something like what's shown in Figure 5.11:

Figure 5.11: Kubernetes is unable to schedule this pod

It explains two things:

• One of the nodes is out of CPU resources.

• One of the nodes has a taint (node.kubernetes.io/unreachable) that
the pod didn't tolerate. This means that the node that is NotReady can't
accept pods.

4. We can solve this capacity issue by starting up node 2 as shown in Figure 5.12.
This can be done in a way similar to the shutdown process:

Figure 5.12: Start node 2 again

138 | Handling common ailures in AKS

5. It will take a couple of minutes for the other node to become available again
in Kubernetes. You can monitor the progress on the pods by executing the
following command:

kubectl get pods -w

This will show you an output after a couple of minutes similar to Figure 5.13:

Figure 5.13: Pods move from a Pending state to ContainerCreating to Running

Here again, you see the container status change from Pending, to
ContainerCreating, to nally Running.

6. If you re-execute the describe command on the previous pod, you'll see an
output like what's shown in Figure 5.14:

Figure 5.14: When the node is available again, the Pending pods are assigned to that node

This shows that after node 2 became available, Kubernetes scheduled the pod
on that node, and then started the container.

Fixing storage mount issues | 139

In this section, you learned how to diagnose out-of-resource errors. You were able
to solve the error by adding another node to the cluster. Before moving on to the
nal ailure mode, clean up the guestbook deployment.

Note

In Chapter 4, Building scalable applications, the cluster autoscaler was
introduced. The cluster autoscaler will monitor out-o-resource errors and add
new nodes to the cluster automatically.

Let's clean up the guestbook deployment by running the following delete
command:

kubectl delete -f guestbook-all-in-one.yaml

It is now also safe to close the other Cloud Shell window you opened earlier.

So far, you have learned how to recover from two failure modes for nodes in a
Kubernetes cluster. First, you saw how Kubernetes handles a node going ofine
and how the system reschedules pods to a working node. After that, you saw how
Kubernetes uses requests to manage the scheduling of pods on a node, and what
happens when a cluster is out of resources. In the next section, you'll learn about
another failure mode in Kubernetes, namely what happens when Kubernetes
encounters storage mounting issues.

Fixing storage mount issues

Earlier in this chapter, you noticed how the guestbook application lost data when
the Redis master was moved to another node. This happened because that sample
application didn't use any persistent storage. In this section, you'll see an example
of how PVCs can be used to prevent data loss when Kubernetes moves a pod to
another node. You will see a common error that occurs when Kubernetes moves
pods with PVCs attached, and you'll learn how to x this.

For this, you will reuse the WordPress example from the previous chapter. Before
starting, let's make sure that the cluster is in a clean state:

kubectl get all

140 | Handling common ailures in AKS

This should show you just the one Kubernetes service, as in Figure 5.15:

Figure 5.15: You should only have the one Kubernetes service running for now

Let's also ensure that both nodes are running and Ready:

kubectl get nodes

This should show us both nodes in a Ready state, as in Figure 5.16:

Figure 5.16: You should have two nodes available in your cluster

In the previous example, under the Handling node failures section, you saw that
the messages stored in redis-master are lost if the pod gets restarted. The reason
for this is that redis-master stores all data in its container, and whenever it is
restarted, it uses the clean image without the data. In order to survive reboots, the
data has to be stored outside. Kubernetes uses PVCs to abstract the underlying
storage provider to provide this external storage.

To start this example, set up the WordPress installation.

Starting the WordPress installation

Let's start by installing WordPress. We will demonstrate how it works and then
verify that storage is still present after a reboot.

If you have not done so yet in a previous chapter, add the Helm repository for
Bitnami:

helm repo add bitnami https://charts.bitnami.com/bitnami

Fixing storage mount issues | 141

Begin reinstallation by using the following command:

helm install wp bitnami/wordpress

This will take a couple of minutes to process. You can follow the status of this
installation by executing the following command:

kubectl get pods -w

After a couple of minutes, this should show you two pods with a status of Running
and with a ready status of 1/1 for both pods, as shown in Figure 5.17:

Figure 5.17: All pods will have the status of Running after a couple of minutes

You might notice that the wp-wordpress pod went through an Error status and was
restarted afterward. This is because the wp-mariadb pod was not ready in time,
and wp-wordpress went through a restart. You will learn more about readiness and
how this can infuence pod restarts in Chapter 7, Monitoring the AKS cluster and the
application.

In this section, you saw how to install WordPress. Now, you will see how to avoid
data loss using persistent volumes.

142 | Handling common ailures in AKS

Using persistent volumes to avoid data loss

A persistent volume (PV) is the way to store persistent data in the cluster with
Kubernetes. PVs were discussed in more detail in Chapter 3, Application deployment
on AKS. Let's explore the PVs created for the WordPress deployment:

1. You can get the PersistentVolumeClaims using the following command:

kubectl get pvc

This will generate an output as shown in Figure 5.18:

Figure 5.18: Two PVCs are created by the WordPress deployment

A PersistentVolumeClaim will result in the creation of a PersistentVolume. The
PersistentVolume is the link to the physical resource created, which is an Azure
disk in this case. The following command shows the actual PVs that are created:

kubectl get pv

This will show you the two PersistentVolumes:

Figure 5.19: Two PVs are created to store the data of the PVCs

You can get more details about the specic PersistentVolumes that were
created. Copy the name of one of the PVs, and run the following command:

kubectl describe pv <pv name>

Fixing storage mount issues | 143

This will show you the details of that volume, as in Figure 5.20:

Figure 5.20: The details of one of the PVs

Here, you can see which PVC has claimed this volume and what the DiskName
is in Azure.

2. Verify that your site is working:

kubectl get service

This will show us the public IP of our WordPress site, as seen in Figure 5.21:

Figure 5.21: Public IP of the WordPress site

144 | Handling common ailures in AKS

3. If you remember from Chapter 3, Application deployment of AKS, Helm showed
you the commands you need to get the admin credentials for our WordPress
site. Let's grab those commands and execute them to log on to the site as
follows:

helm status wp
echo Username: user
echo Password: $(kubectl get secret --namespace default wp-wordpress
-o jsonpath="{.data.wordpress-password}" | base64 -d)

This will show you the username and password, as displayed in Figure 5.22:

Figure 5.22: Getting the username and password for the WordPress application

Fixing storage mount issues | 145

You can log in to our site via the following address: http://<external-ip>/admin.
Log in here with the credentials from the previous step. Then you can go ahead
and add a post to your website. Click the Write your rst blog post button, and then
create a short post, as shown in Figure 5.23:

Figure 5.23: Writing your rst blog post

Type some text now and hit the Publish button, as shown in Figure 5.24. The text
itself isn't important; you are writing this to verify that data is indeed persisted to
disk:

Figure 5.24: Publishing a post with random text

146 | Handling common ailures in AKS

If you now head over to the main page of your website at http://<external-ip>,
you'll see your test post as shown in Figure 5.25:

Figure 5.25: The published blog post appears on the home page

In this section, you deployed a WordPress site, you logged in to your WordPress
site, and you created a post. You will verify whether this post survives a node
failure in the next section.

Handling pod failure with PVC involvement

The rst test you'll do with the PVCs is to kill the pods and veriy whether the data
has indeed persisted. To do this, let's do two things:

1. Watch the pods in your application: To do this, use the current Cloud Shell and
execute the following command:

kubectl get pods -w

2. Kill the two pods that have the PVC mounted: To do this, create a new Cloud
Shell window by clicking on the icon shown in Figure 5.26:

Figure 5.26: Opening a new Cloud Shell instance

Fixing storage mount issues | 147

Once you open a new Cloud Shell, execute the following command:

kubectl delete pod --all

In the original Cloud Shell, follow along with the watch command that you
executed earlier. You should see an output like what's shown in Figure 5.27:

Figure 5.27: After deleting the pods, Kubernetes will automatically recreate both pods

As you can see, the two original pods went into a Terminating state. Kubernetes
quickly started creating new pods to recover from the pod outage. The pods
went through a similar life cycle as the original ones, going from Pending to
ContainerCreating to Running.

3. If you head on over to your website, you should see that your demo post has
been persisted. This is how PVCs can help you prevent data loss, as they persist
data that would not have been persisted in the pod itself.

In this section, you've learned how PVCs can help when pods get recreated on the
same node. In the next section, you'll see how PVCs are used when a node has a
failure.

148 | Handling common ailures in AKS

Handling node failure with PVC involvement

In the previous example, you saw how Kubernetes can handle pod failures when
those pods have a PV attached. In this example, you'll learn how Kubernetes
handles node failures when a volume is attached:

1. Let's rst check which node is hosting your application, using the ollowing
command:

kubectl get pods -o wide

In the example shown in Figure 5.28, node 2 was hosting MariaDB, and node 0
was hosting the WordPress site:

Figure 5.28: Check which node hosts the WordPress site

2. Introduce a failure and stop the node that is hosting the WordPress pod using
the Azure portal. You can do this in the same way as in the earlier example.
First, look for the scale set backing your cluster, as shown in Figure 5.29:

Figure 5.29: Looking for the scale set hosting your cluster

Fixing storage mount issues | 149

3. Then shut down the node, by clicking on Instances in the left-hand menu, then
selecting the node you need to shut down and clicking the Stop button, as
shown in Figure 5.30:

Figure 5.30: Shutting down the node

4. After this action, once again, watch the pods to see what is happening in the
cluster:

kubectl get pods -o wide -w

As in the previous example, it is going to take 5 minutes before Kubernetes
will start taking action against the failed node. You can see that happening in
Figure 5.31:

Figure 5.31: A pod in a ContainerCreating state

5. You are seeing a new issue here. The new pod is stuck in a ContainerCreating
state. Let's gure out what is happening here. First, describe that pod:

kubectl describe pods/wp-wordpress-<pod-id>

150 | Handling common ailures in AKS

You will get an output as shown in Figure 5.32:

Figure 5.32: Output explaining why the pod is in a ContainerCreating state

This tells you that there is a problem with the volume. You see two errors
related to that volume: the FailedAttachVolume error explains that the volume
is already used by another pod, and FailedMount explains that the current pod
cannot mount the volume. You can solve this by manually forcefully removing
the old pod stuck in the Terminating state.

Note

The behavior o the pod stuck in the Terminating state is not a bug. This is
deault Kubernetes behavior. The Kubernetes documentation states the
ollowing: "Kubernetes (versions 1.5 or newer) will not delete pods just because
a Node is unreachable. The pods running on an unreachable Node enter the
Terminating or Unknown state after a timeout. Pods may also enter these states
when the user attempts the graceful deletion of a pod on an unreachable Node."
You can read more at https://kubernetes.io/docs/tasks/run-application/orce-
delete-stateul-set-pod/.

6. To forcefully remove the terminating pod from the cluster, get the full pod
name using the following command:

kubectl get pods

This will show you an output similar to Figure 5.33:

Figure 5.33: Getting the name of the pod stuck in the Terminating state

Fixing storage mount issues | 151

7. Use the pod's name to force the deletion of this pod:

kubectl delete pod wordpress-wp-<pod-id> --force

8. After the pod has been deleted, it will take a couple of minutes for the other
pod to enter a Running state. You can monitor the state of the pod using the
following command:

kubectl get pods -w

This will return an output similar to Figure 5.34:

Figure 5.34: The new WordPress pod returning to a Running state

9. As you can see, this brought the new pod to a healthy state. It did take a couple
of minutes for the system to pick up the changes and then mount the volume
to the new pod. Let's get the details of the pod again using the following
command:

kubectl describe pod wp-wordpress-<pod-id>

This will generate an output as follows:

Figure 5.35: The new pod is now attaching the volume and pulling the container image

152 | Handling common ailures in AKS

10. This shows you that the new pod successfully got the volume attached and
that the container image got pulled. This also made your WordPress website
available again, which you can verify by browsing to the public IP. Before
continuing to the next chapter, clean up the application using the following
command:

helm delete wp
kubectl delete pvc --all
kubectl delete pv --all

11. Let's also start the node that was shut down: go back to the scale set pane in
the Azure portal, click Instances in the left-hand menu, select the node you
need to start, and click on the Start button, as shown in Figure 5.36:

Figure 5.36: Starting node 0 again

In this section, you learned how you can recover from a node failure when PVCs
aren't mounting to new pods. All you needed to do was forcefully delete the pod
that was stuck in the Terminating state.

Summary | 153

Summary

In this chapter, you learned about common Kubernetes failure modes and how you
can recover from them. This chapter started with an example of how Kubernetes
automatically detects node failures and how it will start new pods to recover the
workload. After that, you scaled out your workload and had your cluster run out of
resources. You recovered from that situation by starting the failed node again to
add new resources to the cluster.

Next, you saw how PVs are useful to store data outside of a pod. You deleted all
pods on the cluster and saw how the PV ensured that no data was lost in your
application. In the nal example in this chapter, you saw how you can recover
from a node failure when PVs are attached. You were able to recover the workload
by forcefully deleting the terminating pod. This brought your workload back to a
healthy state.

This chapter has explained common failure modes in Kubernetes. In the next
chapter, we will introduce HTTPS support to our services and introduce
authentication with Azure Active Directory.

6
Securing your

application with
HTTPS

HTTPS has become a necessity for any public-facing website. Not only does it
improve the security of your website, but it is also becoming a requirement for
new browser functionalities. HTTPS is a secure version of the HTTP protocol.
HTTPS makes use of Transport Layer Security (TLS) certicates to encrypt trac
between an end user and a server, or between two servers. TLS is the successor
to the Secure Sockets Layer (SSL). The terms TLS and SSL are often used
interchangeably.

In the past, you needed to buy certicates rom a certifcate authority (CA), then
set them up on your web server and renew them periodically. While that is still
possible today, the Let's Encrypt service and helpers in Kubernetes make it very
easy to set up veried TLS certicates in your cluster. Let's Encrypt is a non-prot
organization run by the Internet Security Research Group and backed by multiple
companies. It is a ree service that oers veried TLS certicates in an automated
manner. Automation is a key benet o the Let's Encrypt service.

156 | Securing your application with HTTPS

In terms of Kubernetes helpers, you will learn about a new object called an Ingress
and use a Kubernetes add-on called cert-manager. An ingress is an object within
Kubernetes that manages external access to services, commonly used for HTTP
services. An ingress adds additional functionality on top of the service object we
explained in Chapter 3, Application deployment on AKS. It can be congured to
handle HTTPS trac. It can also be congured to route trac to dierent back-
end services based on the hostname, which is assigned by the Domain Name
System (DNS) that is used to connect.

cert-manager is a Kubernetes add-on that helps in automating the creation of
TLS certicates. It also helps in the rotation o certicates when they are close
to expiring. cert-manager can interace with Let's Encrypt to request certicates
automatically.

In this chapter, you will see how to set up Azure Application Gateway as a
Kubernetes ingress, and cert-manager to interace with Let's Encrypt.

The following topics will be covered in this chapter:

• Setting up Azure Application Gateway as a Kubernetes ingress

• Setting up an ingress in front of a service

• Adding TLS support to an ingress

Let's start with setting up Azure Application Gateway as an ingress or AKS.

Setting up Azure Application Gateway as a
Kubernetes ingress

An ingress in Kubernetes is an object that is used to route HTTP and HTTPS trac
rom outside the cluster to services in a cluster. Exposing services using an ingress
rather than exposing them directly, as you've done up to this point—has a number
of advantages. These advantages include the ability to route multiple hostnames
to the same public IP address and ofoading TLS termination rom the actual
application to the ingress.

Setting up Azure Application Gateway as a Kubernetes ingress | 157

To create an ingress in Kubernetes, you need to install an ingress controller. An
ingress controller is sotware that can create, congure, and manage ingresses
in Kubernetes. Kubernetes does not come with a preinstalled ingress controller.
There are multiple implementations of ingress controllers, and a full list is available
at this URL: https://kubernetes.io/docs/concepts/services-networking/ingress-
controllers/

In Azure, application gateway is a Layer 7 load balancer, which can be used as
an ingress for Kubernetes by using the Application Gateway Ingress Controller
(AGIC). A layer 7 load balancer is a load balancer that works at the application layer,
which is the seventh and highest layer in the OSI networking reference model.
Azure Application Gateway has a number of advanced features such as autoscaling
andWeb Application Firewall (WAF).

There are two ways o conguring the AGIC, either using Helm or as an Azure
Kubernetes Service (AKS) add-on. Installing AGIC using the AKS add-on
unctionality will result in a Microsot-supported conguration. Additionally,
the add-on method of deployment will be automatically updated by Microsoft,
ensuring that your environment is always up to date.

In this section, you will create a new application gateway instance, set up AGIC
using the add-on method, and nally, deploy an ingress resource to expose an
application. Later in this chapter, you will extend this setup to also include TSL
using a Let's Encrypt certicate.

Creating a new application gateway

In this section, you will use the Azure CLI to create a new application gateway. You
will then use this application gateway in the next section to integrate with AGIC.
The different steps in this section are summarized in the code samples for this
chapter in the setup-appgw.sh le that is part o the code samples that come with
this book.

158 | Securing your application with HTTPS

1. To organize the resources created in this chapter, it is recommended that you
create a new resource group. Make sure to create the new resource group in
the same location you deployed your AKS cluster in. You can do this using the
ollowing command in the Azure CLI:

az group create -n agic -l westus2

2. Next, you will need to create the networking components required for your
application gateway. These are a public IP with a DNS name and a new virtual
network. You can do this using the ollowing commands:

az network public-ip create -n agic-pip \
-g agic --allocation-method Static --sku Standard \
--dns-name "<your unique DNS name>"

az network vnet create -n agic-vnet -g agic \
--address-prefx 192.168.0.0/24 --subnet-name agic-subnet \
--subnet-prefx 192.168.0.0/24

Note

The az network public-ip create command might show you a warning
message [Coming breaking change] In the coming release, the default
behavior will be changed as follows when sku is Standard and zone is not
provided: For zonal regions, you will get a zone-redundant IP indicated
by zones:["1","2","3"]; For non-zonal regions, you will get a non zone-
redundant IP indicated by zones:[].

3. Finally, you can create the application gateway. This command will take a few
minutes to execute

az network application-gateway create -n agic -l westus2 \
-g agic --sku Standard_v2 --public-ip-address agic-pip \
--vnet-name agic-vnet --subnet agic-subnet

4. It will take a couple of minutes for the application gateway to deploy. Once it is
created, you can see the resource in the Azure portal. To nd this, look or agic
(or the name you gave your application gateway) in the Azure search bar, and
select your application gateway.

Setting up Azure Application Gateway as a Kubernetes ingress | 159

Figure 6.1: Looking for the application gateway in the Azure search bar

5. This will show you your application gateway in the Azure portal, as shown in
Figure 6.2:

Figure 6.2: The application gateway in the Azure portal

160 | Securing your application with HTTPS

6. To verify that it has been created successfully, browse to the DNS name you
congured or the public IP address. This will show you an output similar to
Figure 6.3. Note that the error message shown is expected since you haven't
congured any applications yet behind the application gateway. You will
congure applications behind the application gateway using AGIC in the Adding
an ingress rule for the guestbook application section.

Figure 6.3: Verify that you can connect to the application gateway

Now that you've created a new application gateway and were able to connect
to it, we will move on to integrating this application gateway with your existing
Kubernetes cluster.

Setting up the AGIC

In this section, you will integrate the application gateway with your Kubernetes
cluster using the AGIC AKS add-on. You will also set up virtual network peering so
the application gateway can send trac to your Kubernetes cluster.

1. To enable integration between your cluster and your application gateway, use
the following command:

appgwId=$(az network application-gateway \
show -n agic -g agic -o tsv --query "id")

az aks enable-addons -n handsonaks \
-g rg-handsonaks -a ingress-appgw \
--appgw-id $appgwId

Setting up Azure Application Gateway as a Kubernetes ingress | 161

2. Next, you will need to peer the application gateway network with the AKS
network. To peer both networks, you can use the following code:

nodeResourceGroup=$(az aks show -n handsonaks \
-g rg-handsonaks -o tsv --query "nodeResourceGroup")

aksVnetName=$(az network vnet list \
-g $nodeResourceGroup -o tsv --query "[0].name")

aksVnetId=$(az network vnet show -n $aksVnetName \
-g $nodeResourceGroup -o tsv --query "id")

az network vnet peering create \
-n AppGWtoAKSVnetPeering -g agic \
--vnet-name agic-vnet --remote-vnet $aksVnetId \
--allow-vnet-access

appGWVnetId=$(az network vnet show -n agic-vnet \
-g agic -o tsv --query "id")

az network vnet peering create \
-n AKStoAppGWVnetPeering -g $nodeResourceGroup \
--vnet-name $aksVnetName --remote-vnet $appGWVnetId --allow-vnet-

access

This concludes the integration between the application gateway and your AKS
cluster. You've enabled the AGIC add-on, and connected both the networks
together. In the next section, you will use this AGIC integration to create an ingress
for a demo application.

Adding an ingress rule for the guestbook application

Up to this point, you have created a new application gateway and integrated it with
your Kubernetes cluster. In this section, you will deploy the guestbook application
and then expose it using an ingress.

1. To launch the guestbook application, type in the following command:

kubectl create -f guestbook-all-in-one.yaml

162 | Securing your application with HTTPS

This will create the guestbook application you've used in the previous chapters.
You should see the objects being created as shown in Figure 6.4:

Figure 6.4: Creating the guestbook application

2. You can then use the ollowing YAML le to expose the ront-end service via
the ingress. This is provided as simple-frontend-ingress.yaml in the source
code for this chapter:

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 name: simple-rontend-ingress
5 annotations:
6 kubernetes.io/ingress.class: azure/application-gateway
7 spec:
8 rules:
9 - http:
10 paths:
11 - path: /
12 pathType: Prefx
13 backend:
14 service:
15 name: rontend
16 port:
17 number: 80

Setting up Azure Application Gateway as a Kubernetes ingress | 163

Let's have a look at what is dened in this YAML le:

• Line 1: You speciy the Kubernetes API version or the object you are
creating.

• Line 2: You dene that you are creating an Ingress object.

• Lines 5-6: Here, you're telling Kubernetes that you want to create an
ingress of the class azure/application-gateway.

The ollowing lines dene the actual ingress:

• Lines 8-12: Here, you dene the path this ingress is listening on. In our
case, this is the top-level path. In more advanced cases, you can have
different paths pointing to different services.

• Lines 13-17: These lines dene the actual service this trac should be
pointed to.

You can use the ollowing command to create this ingress:

kubectl apply -f simple-frontend-ingress.yaml

3. If you now go to http://dns-name/, which you created in the Creating a new
application gateway section, you should get an output as shown in Figure 6.5:

Figure 6.5: Accessing the guestbook application via the ingress

164 | Securing your application with HTTPS

Note

You didn't have to publicly expose the ront-end service as you have done in
the preceding chapters. You have added the ingress as the exposed service,
and the ront-end service remains private to the cluster.

Figure 6.6: Flowchart displaying publicly accessible ingress

4. You can veriy this by running the ollowing command:

kubectl get service

Adding TLS to an ingress | 165

5. This should show you that you have no public services, as seen by the lack of
EXTERNAL-IP in Figure 6.7:

Figure 6.7: Output shows that you have no public services

In this section, you launched an instance o the guestbook application. You then
exposed it publicly by creating an ingress, which in turn congured the application
gateway that you created earlier. Only the ingress was publicly accessible.

Next, you'll extend the unctionality o AGIC and learn how to secure trac using a
Certicate rom Let's Encrypt.

Adding TLS to an ingress

You will now add HTTPS support to your application. To do this, you need a TLS
certicate. You will be using the cert-manager Kubernetes add-on to request a
certicate rom Let's Encrypt.

Note

Although this section ocuses on using an automated service such as Let's
Encrypt, you can still pursue the traditional path o buying a certicate
rom an existing CA and importing it into Kubernetes. Please reer to the
Kubernetes documentation or more inormation on how to do this: https://
kubernetes.io/docs/concepts/services-networking/ingress/#tls

166 | Securing your application with HTTPS

There are a couple of steps involved. The process of adding HTTPS to the
application involves the following:

1. Install cert-manager, which interaces with the Let's Encrypt API to request a
certicate or the domain name you speciy.

2. Install the certicate issuer, which will get the certicate rom Let's Encrypt.
3. Create an SSL certicate or a given Fully Qualifed Domain Name (FQDN). An

FQDN is a ully qualied DNS record that includes the top-level domain name
(such as .org or .com). You created an FQDN linked to your public IP in step 2 in
the section Creating a new application gateway.

4. Secure the front-end service by creating an ingress to the service with the
certicate created in step 3. In the example in this section, you will not be
executing this step as an individual step. You will, however, recongure the
ingress to automatically pick up the certicate created in step 3.

Let's start with the rst step by installing cert-manager in the cluster.

Installing cert-manager

cert-manager (https://github.com/jetstack/cert-manager) is a Kubernetes add-on
that automates the management and issuance o TLS certicates rom various
issuing sources. It is responsible or renewing certicates and ensuring they are
updated periodically.

Note

The cert-manager project is not managed or maintained by Microsot. It is
an open-source solution previously managed by the company Jetstack, which
recently donated it to the Cloud Native Computing Foundation.

The following commands install cert-manager in your cluster:

kubectl apply -f https://github.com/jetstack/cert-manager/releases/
download/v1.2.0/cert-manager.yaml

Adding TLS to an ingress | 167

This will install a number of components in your cluster as shown in Figure 6.8.
A detailed explanation of these components can be found in the cert-manager
documentation at https://cert-manager.io/docs/installation/kubernetes/.

Figure 6.8: Installing cert-manager in your cluster

168 | Securing your application with HTTPS

cert-managermakes use of a Kubernetes functionality called
CustomResourceDefnition (CRD). CRD is a unctionality used to extend the
Kubernetes API server to create custom resources. In the case of cert-manager,
there are six CRDs that are created, some o which you will use later in this
chapter.

Now that you have installed cert-manager, you can move on to the next step:
setting up a certicate issuer.

Installing the certicate issuer

In this section, you will install the Let's Encrypt staging certicate issuer. A
certicate can be issued by multiple issuers. letsencrypt-staging, for example,
is or testing purposes. As you are building tests, you'll use the staging server.
The code or the certicate issuer has been provided in the source code or this
chapter in the certificate-issuer.yaml le. As usual, use kubectl create -f
certificate-issuer.yaml; the YAML le has the ollowing contents:

1 apiVersion: cert-manager.io/v1
2 kind: Issuer
3 metadata:
4 name: letsencrypt-staging
5 spec:
6 acme:
7 server: https://acme-staging-v02.api.letsencrypt.org/directory
8 email: <your e-mail address>
9 privateKeySecretRe:
10 name: letsencrypt-staging
11 solvers:
12 - http01:
13 ingress:
14 class: azure/application-gateway

Adding TLS to an ingress | 169

Let's look at what we have dened here:

• Lines 1-2: Here, you point to one o the CRDs that cert-manager created.
In this case, specically, you point to the Issuer object. An issuer is a
link between your Kubernetes cluster and the actual certicate authority
creating the certicate, which is Let's Encrypt in this case.

• Lines 6-10: Here you provide the conguration or Let's Encrypt and point
to the staging server.

• Lines 11-14: This is additional conguration or the ACME client to certiy
domain ownership. You point Let's Encrypt to the Azure Application
Gateway ingress to verify that you own the domain you will request a
certicate or later.

With the certicate issuer installed, you can now move on to the next step:
creating the TLS certicate on the ingress.

Creating the TLS certicate and securing the ingress

In this section, you will create a TLS certicate. There are two ways you can
congure cert-manager to create certicates. You can either manually create a
certicate and link it to the ingress, or you can congure your ingress controller,
so cert-manager automatically creates the certicate.

In this example, you will congure your ingress using the latter method.

1. To start, edit the ingress to look like the ollowing YAML code. This le is
present in the source code on GitHub as ingress-with-tls.yaml:

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 name: simple-rontend-ingress
5 annotations:
6 kubernetes.io/ingress.class: azure/application-gateway
7 cert-manager.io/issuer: letsencrypt-staging
8 cert-manager.io/acme-challenge-type: http01
9 spec:
10 rules:

170 | Securing your application with HTTPS

11 - http:
12 paths:
13 - path: /
14 pathType: Prefx
15 backend:
16 service:
17 name: rontend
18 port:
19 number: 80
20 host: <your dns-name>.<your azure region>.cloudapp.azure.com
21 tls:
22 - hosts:
23 - <your dns-name>.<your azure region>.cloudapp.azure.com
24 secretName: rontend-tls

You should make the ollowing changes to the original ingress:

• Lines 7-8: You add two additional annotations to the ingress that points
to a certicate issuer and acme-challenge to prove domain ownership.

• Line 20: The domain name for the ingress is added here. This is required
because Let's Encrypt only issues certicates or domains.

• Line 21-24: This is the TLS conguration o the ingress. It contains the
hostname as well as the name of the secret that will be created to store
the certicate.

2. You can update the ingress you created earlier with the ollowing command:

kubectl apply -f ingress-with-tls.yaml

It takes cert-manager about a minute to request a certicate and congure the
ingress to use that certicate. While you are waiting or that, let's have a look at
the intermediate resources that cert-manager created on your behalf.

3. First off, cert-manager created a certificate object or you. You can look at
the status of that object using the following:

kubectl get certifcate

Adding TLS to an ingress | 171

This command will generate an output as shown in Figure 6.9:

Figure 6.9: The status o the certicate object

4. As you can see, the certicate isn't ready yet. There is another object
that cert-manager created to actually get the certicate. This object is
certificaterequest. You can get its status by using the ollowing command:

kubectl get certifcaterequest

This will generate the output shown in Figure 6.10:

Figure 6.10: The status o the certicaterequest obiect

You can also get more details about the request by issuing a describe
command against the certificaterequest object:

kubectl describe certifcaterequest

While you're waiting or the certicate to be issued, the status will look similar
to Figure 6.11:

Figure 6.11: Using the kubectl describe command to obtain details o the certicaterequest object

172 | Securing your application with HTTPS

As you can see, the certificaterequest object shows you that the order has
been created and that it is pending.

5. After a couple of additional seconds, the describe command should return a
successul certicate creation message. Run the ollowing command to get the
updated status:

kubectl describe certifcaterequest

The output of this command is shown in Figure 6.12:

Figure 6.12: The issued certicate

This should now enable the front-end ingress to be served over HTTPS.

6. Let's try this out in a browser by browsing to the DNS name you created in
the Creating a new application gateway section. Depending on your browser's
cache, you might need to add https:// in front of the URL.

7. Once you reach the ingress, it will indicate an error in the browser, showing
you that the certicate isn't valid, similar to Figure 6.13. This is to be expected
since you are using the Let's Encrypt staging server:

Adding TLS to an ingress | 173

Figure 6.13: Using the Let's Encrypt staging server, the certicate isn't trusted by deault

You can browse to your application by clicking Advanced and selecting
Continue.

In this section, you successully added a TLS certicate to your ingress to secure
trac to it. Since you were able to complete the test with the staging certicate,
you can now move on to a production system.

174 | Securing your application with HTTPS

Switching from staging to production

In this section, you will switch rom a staging certicate to a production-level
certicate. To do this, you can redo the previous exercise by creating a new issuer
in your cluster, like the following (provided in certificate-issuer-prod.yaml as
part o the code samples with this book). Don't orget to change your email address
in the le. The ollowing code is contained in that le:

1 apiVersion: cert-manager.io/v1alpha2
2 kind: Issuer
3 metadata:
4 name: letsencrypt-prod
5 spec:
6 acme:
7 server: https://acme-v02.api.letsencrypt.org/directory
8 email: <your e-mail>
9 privateKeySecretRe:
10 name: letsencrypt-prod
11 solvers:
12 - http01:
13 ingress:
14 class: azure/application-gateway

Then, replace the reference to the issuer in the ingress-with-tls.yaml le with
letsencrypt-prod as shown (provided in the ingress-with-tls-prod.yaml le):

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 name: simple-rontend-ingress
5 annotations:
6 kubernetes.io/ingress.class: azure/application-gateway
7 cert-manager.io/issuer: letsencrypt-prod
8 cert-manager.io/acme-challenge-type: http01
9 spec:
10 rules:
11 - http:
12 paths:
13 - path: /
14 pathType: Prefx
15 backend:
16 service:

Adding TLS to an ingress | 175

17 name: rontend
18 port:
19 number: 80
20 host: <your dns-name>.<your azure region>.cloudapp.azure.com
21 tls:
22 - hosts:
23 - <your dns-name>.<your azure region>.cloudapp.azure.com
24 secretName: rontend-prod-tls

To apply these changes, execute the following commands:

kubectl create - certifcate-issuer-prod.yaml
kubectl apply -f ingress-with-tls-prod.yaml

It will again take about a minute or the certicate to become active. Once the new
certicate is issued, you can browse to your DNS name again and shouldn't see any
more warnings regarding invalid certicates. I you click the padlock icon in the
browser, you should see that your connection is secure and uses a valid certicate:

Figure 6.14: The web page displaying a valid certicate

176 | Securing your application with HTTPS

In this section, you have learned how to add TLS support to an ingress. You did
this by installing the cert-manager Kubernetes add-on. cert-manager got a free
certicate rom Let's Encrypt and added this to the existing ingress deployed on
the application gateway. The process that was described here is not specic to
Azure and Azure Application Gateway. This process of adding TLS to an ingress
works with other ingress controllers as well.

Let's delete the resources you created during this chapter:

kubectl delete -f https://github.com/jetstack/cert-manager/releases/
download/v1.1.0/cert-manager.yaml
az aks disable-addons -n handsonaks \
-g rg-handsonaks -a ingress-appgw

Summary

In this chapter, you added HTTPS security to the guestbook application without
actually changing the source code. You started by setting up a new application
gateway and congured AGIC on AKS. This gives you the ability to create
Kubernetes ingresses that can be congured on the application gateway.

Then, you installed a certicate manager that interaces with the Let's Encrypt
API to request a certicate or the domain name we subsequently specied. You
leveraged a certicate issuer to get the certicate rom Let's Encrypt. You then
recongured the ingress to request a certicate rom this issuer in the cluster.
Using these capabilities o both the certicate manager as well as the ingress, you
are now able to secure your websites using TLS.

In the next chapter, you will learn how to monitor your deployments and set up
alerts. You will also learn how to quickly identiy root causes when errors do occur,
and how to debug applications running on AKS. At the same time, you'll learn how
to perorm the correct xes once you have identied the root causes.

7
Monitoring the AKS

cluster and the
application

Now that you know how to deploy applications on an AKS cluster, let's focus on
how you can ensure that your cluster and applications remain available. In this
chapter, you will learn how to monitor your cluster and the applications running
on it. You'll explore how Kubernetes makes sure that your applications are running
reliably using readiness and liveness probes.

You will also learn how AKS Diagnostics and Azure Monitor are used, and how
they are integrated within the Azure portal. You will see how you can use AKS
Diagnostics to monitor the status of the cluster itself, and how Azure Monitor helps
monitor the pods on the cluster and allows you to get access to the logs of the
pods at scale.

178 | Monitoring the AKS cluster and the application

In brief, the following topics will be covered in this chapter:

• Monitoring and debugging applications using kubectl
• Reviewing metrics reported by Kubernetes

• Reviewing metrics from Azure Monitor

Let's start the chapter by reviewing some of the commands in kubectl that you can
use to monitor your applications.

Commands for monitoring applications

Monitoring the health of applications deployed on Kubernetes as well as the
Kubernetes infrastructure itself is essential for providing a reliable service to your
customers. There are two primary use cases for monitoring:

• Ongoing monitoring to get alerts if something is not behaving as expected

• Troubleshooting and debugging application errors

When observing an application running on top of a Kubernetes cluster, you'll need
to examine multiple things in parallel, including containers, pods, services, and
the nodes in the cluster. For ongoing monitoring, you'll need a monitoring system
such as Azure Monitor or Prometheus. Azure Monitor will be introduced later
in this chapter. Prometheus (https://prometheus.io/) is a popular open-source
solution within the Kubernetes ecosystem to monitor Kubernetes environments.
For troubleshooting, you'll need to interact with the live cluster. The most common
commands used for troubleshooting are as follows:

kubectl get <resource type> <resource name>
kubectl describe <resource type> <resource name>
kubectl logs <pod name>

Each of these commands will be described in detail later in this chapter.

To begin with the practical examples, recreate the guestbook example again using
the following command:

kubectl create -f guestbook-all-in-one.yaml

Commands or monitoring applications | 179

While the create command is running, you will watch its progress in the following
sections. Let's start by exploring the get command.

The kubectl get command

To see the overall picture of deployed applications, kubectl provides the get
command. The get command lists the resources that you specify. Resources can
be pods, ReplicaSets, ingresses, nodes, deployments, secrets, and so on. You have
already run this command in the previous chapters to verify that an application
was ready for use.

Perform the following steps:

1. Run the following get command, which will get us the resources and their
statuses:

kubectl get all

This will show you all the deployments, ReplicaSets, pods, and services in your
namespace:

Figure 7.1: All the resources running in the default namespace

180 | Monitoring the AKS cluster and the application

2. Focus your attention on the pods in your deployment. You can get the status of
the pods with the following command:

kubectl get pods

You will see that only the pods are shown, as seen in Figure 7.2. Let's investigate
this in detail:

Figure 7.2: All the pods in your namespace

The rst column indicates the pod name, or example, frontend-766d4f77cb-
ds6gb. The second column indicates how many containers in the pod are ready
against the total number o containers in the pod. Readiness is dened via a
readiness probe in Kubernetes. There is a dedicated section called Readiness
and liveness probes later in this chapter.

The third column indicates the status, for example, Pending,
ContainerCreating, Running, and so on. The fourth column indicates the
number o restarts, while the th column indicates the age when the pod was
asked to be created.

3. If you need more information about your pod, you can add extra columns to
the output of a get command by adding -o wide to the command like this:

kubectl get pods -o wide

This will show you additional information, as shown in Figure 7.3:

Figure 7.3: Adding -o wide shows more details on the pods

Commands or monitoring applications | 181

The extra columns include the IP address of the pod, the node it is running
on, the nominated node, and readiness gates. A nominated node is only set
when a higher-priority pod preempts a lower-priority pod. The nominated
node eld would then be set on the higher-priority pod. It signies the node
that the higher-priority pod will be scheduled once the lower-priority pod has
terminated gracefully. A readiness gate is a way to introduce external system
components as the readiness for a pod.

Executing a get pods command only shows the state of the current pod. As we
will see next, things can fail at any of the states, and we need to use the kubectl
describe command to dig deeper.

The kubectl describe command

The kubectl describe command gives you a detailed view of the object you are
describing. It contains the details of the object itself, as well as any recent events
related to that object. While the kubectl get events command lists all the events
for the entire namespace, with the kubectl describe command, you would get
only the events or that specic object. I you are interested in just pods, you can
use the following command:

kubectl describe pods

The preceding command lists all the information pertaining to all pods. This is
typically too much information to contain in a typical shell.

If you want information on a particular pod, you can type the following:

kubectl describe pod/<pod-name>

Note

You can either use a slash or a space in between pod and <pod-name>.
The ollowing two commands will have the same output:
kubectl describe pod/<pod-name>
kubectl describe pod <pod-name>

182 | Monitoring the AKS cluster and the application

You will get an output similar to Figure 7.4, which will be explained in detail later:

Figure 7.4: Describing an object shows the detailed output of that object

Commands or monitoring applications | 183

From the description, you can get the node on which the pod is running, how long
it has been running, its internal IP address, the Docker image name, the ports
exposed, the env variables, and the events (from within the past hour).

In the preceding example, the pod name is frontend-766d4f77cb-ds6gb. As
mentioned in Chapter 1, Introduction to containers and Kubernetes, it has the
<ReplicaSet name>-<random 5 chars> format. The replicaset name itself is
randomly generated from the deployment name front end: <deployment name>-
<random-string>.

Figure 7.5 shows the relationship between a deployment, a ReplicaSet, and pods:

Figure 7.5: Relationship between a deployment, a ReplicaSet, and pods

The namespace under which this pod runs is default. So far, you have just been
using the default namespace, appropriately named default.

Another section that is important from the preceding output is the node section:

Node: aks-agentpool-39838025-vmss000000/10.240.0.4

The node section lets you know which physical node/VM the pod is running on.
If the pod is repeatedly restarting or having issues running and everything else
seems OK, there might be an issue with the node itself. Having this information is
essential to perform advanced debugging.

The following is the time the pod was initially scheduled:

Start Time: Tue, 26 Jan 2021 02:10:33 +0000

This doesn't mean that the pod has been running since that time, so the time can
be misleading in that sense. If a health event occurs (for example, a container
crashes), the pod will reset automatically.

184 | Monitoring the AKS cluster and the application

You can add more information about a workload in Kubernetes using Labels, as
shown here:

Labels:app=guestbook
pod-template-hash=57d8c9fb45
tier=frontend

Labels are a commonly used functionality in Kubernetes. For example, this is how
links between objects, such as service to pod and deployment to ReplicaSet
to pod (Figure 7.5), are made. I you see that trac is not being routed to a pod
rom a service, this is the rst thing you should check. Also, you'll notice that the
pod-template-hash label also occurs in the pod name. This is how the link between
the ReplicaSet and the pod is made. If the labels don't match, the resources won't
attach.

The following shows the internal IP of the pod and its status:

Status: Running
IP: 10.244.0.44
IPs:
IP: 10.244.0.44

As mentioned in previous chapters, when building out your application, the pods
can be moved to different nodes and get a different IP, so you should avoid using
these IP addresses. However, when debugging application issues, having a direct IP
for a pod can help with troubleshooting. Instead of connecting to your application
through a service object, you can connect directly from one pod to another using
the other pod's IP address to test connectivity.

The containers running in the pod and the ports that are exposed are listed in the
following block:

Containers:
php-redis:
...
Image: gcr.io/google-samples/gb-frontend:v4
...
Port: 80/TCP
...
Requests:
cpu: 10m

Commands or monitoring applications | 185

memory: 10Mi
Environment:
GET_HOSTS_FROM: dns

...

In this case, you are getting the gb-frontend container with the v4 tag from the
gcr.io container registry, and the repository name is google-samples.

Port 80 is exposed to outside trac. Since each pod has its own IP, the same port
can be exposed for multiple instances of the same pod even when running on the
same host. For instance, if you had two pods running a web server on the same
node, both could use port 80, since each pod has its own IP address. This is a huge
management advantage as you don't have to worry about port collisions on the
same node.

Any events that occurred in the previous hour show up here:

Events:

Using kubectl describe is very useful to get more context about the resources
you are running. The nal section contains events related to the object you were
describing. You can get all events in your cluster using the kubectl get events
command.

To see the events for all resources in the system, run the following command:

kubectl get events

Note

Kubernetes maintains events or only 1 hour by deault.

If everything goes well, you should have an output similar to Figure 7.6:

Figure 7.6: Getting the events shows all events from the past hour

186 | Monitoring the AKS cluster and the application

Figure 7.6 only shows the event for one pod, but as you can see in your output, the
output for this command contains the events for all resources that were recently
created, updated, or deleted.

In this section, you have learned about the commands you can use to inspect a
Kubernetes application. In the next section, you'll focus on debugging application
failures.

Debugging applications

Now that you have a basic understanding of how to inspect applications, you can
start seeing how you can debug issues with deployments.

In this section, common errors will be introduced, and you'll determine how to
debug and x them.

If you haven't implemented the Guestbook application already, run the following
command:

kubectl create -f guestbook-all-in-one.yaml

After a couple of seconds, the application should be up and running.

Image pull errors

In this section, you are going to introduce image pull errors by setting the image
tag value to a non-existent one. An image pull error occurs when Kubernetes
cannot download the image for the container it needs to run.

1. Run the following command on Azure Cloud Shell:

kubectl edit deployment/frontend

Next, change the image tag from v4 to v_non_existent by executing the
following steps.

2. Type /gb-frontend and hit the Enter key to have your cursor brought to the
image denition.

Commands or monitoring applications | 187

Hit the I key to go into insert mode. Delete v4 and type v_non_existent as
shown in Figure 7.7:

Figure 7.7: Changing the image tag from v4 to v_non_existent

3. Now, close the editor by rst hitting the Esc key, then type :wq! and hit Enter.
4. Run the following command to list all the pods in the current namespace:

kubectl get pods

The preceding command should indicate errors, as shown in Figure 7.8:

Figure 7.8: One o the pods has the status o either ErrImagePull or ImagePullBackOf

188 | Monitoring the AKS cluster and the application

You might see either a status called ErrImagePull or ImagePullBackOff. Both
errors refer to the fact that Kubernetes cannot pull the image from the registry.
The ErrImagePull error describes just this; ImagePullBackOff describes
that Kubernetes will back off (wait) before retrying to download the image.
This back-off has an exponential delay, going from 10 to 20 to 40 seconds and
beyond, up to 5 minutes.

5. Run the following command to get the full error details:

kubectl describe pods/<failed pod name>

A sample error output is shown in Figure 7.9. The key error message is
highlighted in red:

Figure 7.9: Using describe shows more details on the error

The events clearly show that the image does not exist. Errors such as passing
invalid credentials to private Docker repositories will also show up here.

6. Let's x the error by setting the image tag back to v4. First, type the following
command in Cloud Shell to edit the deployment:

kubectl edit deployment/frontend

7. Type /gb-frontend and hit Enter to have your cursor brought to the image
denition.

8. Hit the I key to go into insert mode. Delete v_non_existent, and type v4.
9. Now, close the editor by rst hitting the Esc key, then type :wq! and hit Enter.
10. This should automatically x the deployment. You can veriy it by getting the

events for the pods again.

Commands or monitoring applications | 189

Note

Because Kubernetes did a rolling update, the ront end was continuously
available with zero downtime. Kubernetes recognized a problem with the new
specication and stopped rolling out additional changes automatically.

Image pull errors can occur when images aren't available or when you don't have
access to the container registry. In the next section, you'll explore an error within
the application itself.

Application errors

You will now see how to debug an application error. The errors in this section will
be self- induced, similar to the last section. The method for debugging the issue is
the same as the one we used to debug errors on running applications.

1. To start, get the public IP of the front-end service:

kubectl get service

2. Connect to the service by pasting its public IP in a browser. Create a couple of
entries:

Figure 7.10: Make a couple of entries in the guestbook application

You now have an instance of the guestbook application running. To improve the
experience with the example, it's best to scale down the front end so there is only a
single replica running.

190 | Monitoring the AKS cluster and the application

Scaling down the front end

In Chapter 3, Application deployment on AKS, you learned how the deployment
o the ront end has a conguration o replicas=3. This means that the requests
the application receives can be handled by any of the pods. To introduce the
application error and note the errors, you'll need to make changes in all three of
them.

But to make this example easier, set replicas to 1, so that you have to make
changes to only one pod:

kubectl scale --replicas=1 deployment/frontend

Having only one replica running will make introducing the error easier. Let's now
introduce this error.

Introducing an app error

In this case, you are going to make the Submit button fail to work. You will need to
modify the application code for this:

Note:

It is not advised to make production changes to your application by using
kubectl exec to execute commands in your pods. I you need to make
changes to your application, the preerred way is to create a new container
image and update your deployment.

1. You will use the kubectl exec command. This command lets you run
commands on the command line of that pod. With the -it option, it attaches
an interactive terminal to the pod and gives you a shell that you can run
commands on. The following command launches a Bash terminal on the pod:

kubectl exec -it <frontend-pod-name> -- bash

Commands or monitoring applications | 191

This will enter a Bash shell environment as shown in Figure 7.11:

Figure 7.11: Getting a pod's name and getting access to a shell inside the pod

2. Once you are in the container shell, run the following command:

apt update
apt install -y vim

The preceding code installs the vim editor so that we can edit the le to
introduce an error.

3. Now, use vim to open the guestbook.php le:

vim guestbook.php

4. Add the following code at line 17, below the line if ($_GET['cmd'] == 'set')
{. Remember, to edit a line in vim, you hit the I key. After you are done editing,
you can exit by hitting Esc, and then type :wq! and press Enter:

$host = 'localhost';
i(!defned('STDOUT')) defne('STDOUT', open('php://stdout', 'w'));
write(STDOUT, "hostname at the beginning o 'set' command ");
write(STDOUT, $host);
write(STDOUT, "\n");

192 | Monitoring the AKS cluster and the application

The le will look like Figure 7.12:

Figure 7.12: The updated code that introduced an error and additional logging

5. You have now introduced an error where reading messages will work, but not
writing them. You have done this by asking the front end to connect to the
Redis master at the non-existent localhost server. The writes should fail. At the
same time, to make this demo more visual, we added some additional logging
to this section of the code.

Commands or monitoring applications | 193

Open your guestbook application by browsing to its public IP, and you should
see the entries from earlier:

Figure 7.13: The entries from earlier are still present

6. Now, create a new message by typing a message and hitting the Submit button:

Figure 7.14: A new message was created

Submitting a new message makes it appear in the application. If you did not
know any better, you would have thought the entry was written successfully
to the database. However, if you refresh your browser, you will see that the
message is no longer there.

194 | Monitoring the AKS cluster and the application

7. To verify that the message has not been written to the database, hit the
Refresh button in your browser; you will see just the initial entries, and the
new entry has disappeared:

Figure 7.15: The new message has disappeared

As an app developer or operator, you'll probably get a ticket like this: After the
new deployment, new entries are not persisted. Fix it.

Using logs to identify the root cause

The rst step toward resolution is to get the logs.

1. Exit out of the front-end pod for now and get the logs for this pod:

exit
kubectl logs <frontend-pod-name>

Note:

You can add the -f ag ater kubectl logs to get a live log stream, as ollows:
kubectl logs <pod-name> -f. This is useul during live debugging sessions.

Commands or monitoring applications | 195

2. You will see entries such as those seen in Figure 7.16:

Figure 7.16: The new message shows up as part of the application logs

3. Hence, you know that the error is somewhere when writing to the database
in the set section of the code. When you see the entry hostname at the
beginning of 'set' command localhost, you know that the error is between
this line and the start of the client, so the setting of $host = 'localhost'
must be the offending error. This error is not as uncommon as you would think
and, as you just saw, could have easily gone through QA unless there had been
a specic instruction to reresh the browser. It could have worked perectly
well for the developer, as they could have a running Redis server on the local
machine.

Now that you have used logs in Kubernetes to root cause the issue, let's get to
resolving the error and getting our application back to a healthy state.

Solving the issue

There are two options to x this bug you introduced: you can either navigate into
the pod and make the code changes, or you can ask Kubernetes to give us a healthy
new pod. It is not recommended to make manual changes to pods, so in the next
step, you will use the second approach. Let's x this bug by deleting the aulty pod:

kubectl delete pod <podname>

As there is a ReplicaSet that controls the pods, you should immediately get a new
pod that has started from the correct image. Try to connect to the guestbook again
and verify that messages persist across browser refreshes.

196 | Monitoring the AKS cluster and the application

The following points summarize what was covered in this section on how to
identiy an error and how to x it:

• Errors can come in many shapes and forms.

• Most o the errors encountered by the deployment team are conguration
issues.

• Use logs to identify the root cause.

• Using kubectl exec on a container is a useful debugging strategy.

• Note that broadly allowing kubectl exec is a serious security risk, as it lets
the Kubernetes operator execute commands directly in the pods they have
access to. Make sure that only a subset of operators has the ability to use the
kubectl exec command. You can use role-based access control to manage
this access restriction, as you'll learn in Chapter 8, Role-based access control
in AKS.

• Anything printed to stdout and stderr shows up in the logs (independent of
the application/language/logging framework).

In this section, you introduced an application error to the guestbook application
and leveraged Kubernetes logs to pinpoint the issue in the code. In the next
section, you will learn about a powerful mechanism in Kubernetes called readiness
and liveness probes.

Readiness and liveness probes

Readiness and liveness probes were briefy touched upon in the previous section.
In this section, you'll explore them in more depth.

Readiness and liveness probes | 197

Kubernetes uses liveness and readiness probes to monitor the availability of your
applications. Each probe serves a different purpose:

• A liveness probemonitors the availability of an application while it is
running. If a liveness probe fails, Kubernetes will restart your pod. This could
be useul to catch deadlocks, innite loops, or just a "stuck" application.

• A readiness probemonitors when your application becomes available. If a
readiness probe ails, Kubernetes will not send any trac to the unready
pods. This is useul i your application has to go through some conguration
before it becomes available, or if your application has become overloaded
but is recovering from the additional load. By having a readiness probe fail,
your application will temporarily not get any more trac, giving it the ability
to recover from the increased load.

Liveness and readiness probes don't need to be served from the same endpoint in
your application. If you have a smart application, that application could take itself
out o rotation (meaning no more trac is sent to the application) while still being
healthy. To achieve this, it would have the readiness probe fail but have the liveness
probe remain active.

Let's build this out in an example. You will create two nginx deployments, each with
an index page and a health page. The index page will serve as the liveness probe.

Building two web containers

For this example, you'll use a couple of web pages that will be used to connect
to a readiness and a liveness probe. The les are present in the code les or this
chapter. Let's rst create index1.html:

<!DOCTYPE html>
<html>
<head>
<title>Server 1</title>

</head>
<body>
Server 1

</body>
</html>

198 | Monitoring the AKS cluster and the application

After that, create index2.html:

<!DOCTYPE html>
<html>
<head>
<title>Server 2</title>

</head>
<body>
Server 2

</body>
</html>

Let's also create a health page, healthy.html:

<!DOCTYPE html>
<html>
<head>
<title>All is fne here</title>

</head>
<body>
OK

</body>
</html>

In the next step, you'll mount these les to your Kubernetes deployments. To do
this, you'll turn each of these into a configmap that you will connect to your pods.
You've already learned about congmaps in Chapter 3, Application deployment on
AKS. Use the following commands to create the configmap:

kubectl create confgmap server1 --rom-fle=index1.html
kubectl create confgmap server2 --rom-fle=index2.html
kubectl create confgmap healthy --rom-fle=healthy.html

With that out of the way, you can go ahead and create your two web deployments.
Both will be very similar, with just the configmap changing. The rst deployment
le (webdeploy1.yaml) looks like this:

Readiness and liveness probes | 199

1 apiVersion: apps/v1
2 kind: Deployment
...
17 spec:
18 containers:
19 - name: nginx-1
20 image: nginx:1.19.6-alpine
21 ports:
22 - containerPort: 80
23 livenessProbe:
24 httpGet:
25 path: /healthy.html
26 port: 80
27 initialDelaySeconds: 3
28 periodSeconds: 3
29 readinessProbe:
30 httpGet:
31 path: /index.html
32 port: 80
33 initialDelaySeconds: 3
34 periodSeconds: 3
35 volumeMounts:
36 - name: html
37 mountPath: /usr/share/nginx/html
38 - name: index
39 mountPath: /tmp/index1.html
40 subPath: index1.html
41 - name: healthy
42 mountPath: /tmp/healthy.html
43 subPath: healthy.html
44 command: ["/bin/sh", "-c"]
45 args: ["cp /tmp/index1.html /usr/share/nginx/html/index.
html; cp /tmp/healthy.html /usr/share/nginx/html/healthy.html; nginx;
sleep in"]
46 volumes:
47 - name: index
48 confgMap:
49 name: server1
50 - name: healthy
51 confgMap:
52 name: healthy
53 - name: html
54 emptyDir: {}

200 | Monitoring the AKS cluster and the application

There are a few things to highlight in this deployment:

• Lines 23-28: This is the liveness probe. The liveness probe points to the
health page. Remember, if the health page fails, the container will restart.

• Lines 29-32: This is the readiness probe. The readiness probe in our case
points to the index page. If this page fails, the pod will temporarily not be
sent any trac but will remain running.

• Lines 44-45: These two lines contain a couple of commands that get
executed when the container starts. Instead of simply running the nginx
server, this copies the index and ready les in the right location, then starts
nginx, and then uses a sleep command (so the container keeps running).

You can create this deployment using the following command. You can also deploy
the second version for server 2, which is similar to server 1:

kubectl create -f webdeploy1.yaml
kubectl create -f webdeploy2.yaml

Finally, you can also create a service (webservice.yaml) that routes trac to both
deployments:

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: web
5 spec:
6 selector:
7 app: web-server
8 ports:
9 - protocol: TCP
10 port: 80
11 targetPort: 80
12 type: LoadBalancer

You can create that service using the following:

kubectl create -f webservice.yaml

You now have the application up and running. In the next section, you'll introduce
some failures to verify the behavior of the liveness and readiness probes.

Readiness and liveness probes | 201

Experimenting with liveness and readiness probes

In the previous section, the functionality of the liveness and readiness probes was
explained, and you created a sample application. In this section, you will introduce
errors in this application and verify the behavior of the liveness and readiness
probes. You will see how a failure of the readiness probe will cause the pod to
remain running but no longer accept trac. Ater that, you will see how a ailure o
the liveness probe will cause the pod to be restarted.

Let's start by failing the readiness probe.

Failing the readiness probe causes trac to temporarily stop

Now that you have a simple application up and running, you can experiment with
the behavior of the liveness and readiness probes. To start, let's get the service's
external IP to connect to our web server using the browser:

kubectl get service

If you hit the external IP in the browser, you should see a single line that either says
Server 1 or Server 2:

Figure 7.17: Our application is returning trac rom server 1

During the upcoming tests, you'll use a small script called testWeb.sh that has
been provided in the code samples for this chapter to connect to your web page
50 times, so you can monitor a good distribution of results between servers 1 and
2. You'll rst need to make that script executable, and then you can run that script
while your deployment is fully healthy:

chmod +x testWeb.sh
./testWeb.sh <external-ip>

202 | Monitoring the AKS cluster and the application

During healthy operations, we can see that server 1 and server 2 are hit almost
equally, with 24 hits for server 1 and 26 for server 2:

Figure 7.18: While the application is healthy, trac is load-balanced between server 1 and server 2

Let's now move ahead and fail the readiness probe in server 1. To do this, you will
use the kubectl exec command to move the index le to a dierent location:

kubectl get pods #note server1 pod name
kubectl exec <server1 pod name> -- \
mv /usr/share/nginx/html/index.html \
/usr/share/nginx/html/index1.html

Once this is executed, we can view the change in the pod status with the following
command:

kubectl get pods -w

You should see the readiness state of the server 1 pod change to 0/1, as shown in
Figure 7.19:

Figure 7.19: The failing readiness probes causes server 1 to not have any READY containers

This should direct no more trac to the server 1 pod. Let's veriy that:

./testWeb.sh <external-ip>

Readiness and liveness probes | 203

Trac should be redirected to server 2:

Figure 7.20: All trac is now served by server 2

You can now restore the state o server 1 by moving the le back to its rightul
place:

kubectl exec <server1 pod name> -- mv \
/usr/share/nginx/html/index1.html \
/usr/share/nginx/html/index.html

This will return the pod to a Ready state and should again split trac equally:

./testWeb.sh <external-ip>

This will show an output similar to Figure 7.21:

Figure 7.21: Restoring the readiness probe causes trac to be load-balanced again

A ailing readiness probe will cause Kubernetes to no longer send trac to the
ailing pod. You have veried this by causing a readiness probe in your example
application to fail. In the next section, you'll explore the impact of a failing liveness
probe.

204 | Monitoring the AKS cluster and the application

A failing liveness probe restarts the pod

You can repeat the previous process with the liveness probe as well. When the
liveness probe fails, Kubernetes is expected to restart that pod. Let's try this by
deleting the health le:

kubectl exec <server 2 pod name> -- \
rm /usr/share/nginx/html/healthy.html

Let's see what this does to the pod:

kubectl get pods -w

You should see that the pod restarts within a couple of seconds:

Figure 7.22: A failing liveness probe will cause the pod to be restarted

As you can see in Figure 7.22, the pod was successfully restarted, with limited
impact. You can inspect what was going on in the pod by running a describe
command:

kubectl describe pod <server2 pod name>

The preceding command will give you an output similar to Figure 7.23:

Figure 7.23: More details on the pod showing how the liveness probe failed

In the describe command, you can clearly see that the pod failed the liveness
probe. After three failures, the container was killed and restarted.

Metrics reported by Kubernetes | 205

This concludes the experiment with liveness and readiness probes. Remember that
both are useful for your application: a readiness probe can be used to temporarily
stop trac to your pod, so it has to deal with less load. A liveness probe is used to
restart your pod if there is an actual failure in the pod.

Let's also make sure to clean up the deployments you just created:

kubectl delete deployment server1 server2
kubectl delete service web

Liveness and readiness probes are useful to ensure that only healthy pods will
receive trac in your cluster. In the next section, you will explore dierent metrics
reported by Kubernetes that you can use to verify the state of your application.

Metrics reported by Kubernetes

Kubernetes reports multiple metrics. In this section, you'll rst use a number o
kubectl commands to get these metrics. Afterward, you'll look into Azure Monitor
for containers to see how Azure helps with container monitoring.

Node status and consumption

The nodes in your Kubernetes are the servers running your application. Kubernetes
will schedule pods to different nodes in the cluster. You need to monitor the status
of your nodes to ensure that the nodes themselves are healthy and that the nodes
have enough resources to run new applications.

Run the following command to get information about the nodes on the cluster:

kubectl get nodes

The preceding command lists their name, status, and age:

Figure 7.24: There are two nodes in this cluster

206 | Monitoring the AKS cluster and the application

You can get more information by passing the -o wide option:

kubectl get -o wide nodes

The output lists the underlying OS-IMAGE and INTERNAL-IP, and other useful
information, which can be viewed in Figure 7.25:

Figure 7.25: Using -o wide adds more details about the nodes

You can nd out which nodes are consuming the most resources by using the
following command:

kubectl top nodes

It shows the CPU and memory usage of the nodes:

Figure 7.26: CPU and memory utilization of the nodes

Note that this is the actual consumption at that point in time, not the number of
requests a certain node has. To get the requests, you can execute the following:

kubectl describe node <node name>

This will show you the requests and limits per pod, as well as the cumulative
amount for the whole node:

Metrics reported by Kubernetes | 207

Figure 7.27: Describing the nodes shows details on requests and limits

As you can see in Figure 7.27, the describe node command outputs the requests
and limits per pod, across namespaces. This is a good way for cluster operators to
verify how much load is being put on the cluster, across all namespaces.

You now know where you can nd inormation about the utilization o your
nodes. In the next section, you will look into how you can get the same metrics for
individual pods.

Pod consumption

Pods consume CPU and memory resources from an AKS cluster. Requests and
limits are used to congure how much CPU and memory a pod can consume.
Requests are used to reserve a minimum amount of CPU and memory, while limits
are used to set a maximum amount of CPU and memory per pod.

In this section, you will learn how you can use kubectl to get information about
the CPU and memory utilization of pods.

208 | Monitoring the AKS cluster and the application

Let's start by exploring how you can see the requests and limits for a pod that you
currently have running:

1. For this example, you will use the pods running in the kube-system namespace.
Get all the pods in this namespace:

kubectl get pods -n kube-system

This should show something similar to Figure 7.28:

Figure 7.28: The pods running in the kube-system namespace

2. Let's get the requests and limits for one of the coredns pods. This can be done
using the describe command:

kubectl describe pod coredns-<pod id> -n kube-system

In the describe command, there should be a section similar to Figure 7.29:

Figure 7.29: Limits and requests for the CoreDNS pod

Metrics reported by Kubernetes | 209

This shows you that this pod has a memory limit of 170Mi, no CPU limit, and has
a request for 100 m CPU (which means 0.1 CPU) and 70Mi of memory. This means
that if this pod were to consume more than 170 MiB of memory, Kubernetes would
restart that pod. Kubernetes has also reserved 0.1 CPU core and 70 MiB of memory
for this pod.

Requests and limits are used to perform capacity management in a cluster. You
can also get the actual CPU and memory consumption of a pod. Run the following
command and you'll get the actual pod consumption in all namespaces:

kubectl top pods --all-namespaces

This should show you anoutput similar to Figure 7.30:

Figure 7.30: Seeing the CPU and memory consumption of pods

Using the kubectl top command shows the CPU and memory consumption at
the point in time when the command was run. In this case, you can see that the
coredns pods are using 3m CPU and 10Mi of memory.

In this section, you have used the kubectl command to get an insight into
the resource utilization of the nodes and pods in your cluster. This is useful
inormation, but it is limited to that specic point in time. In the next section,
you'll use the Azure portal to get more detailed information on the cluster and the
applications on top of the cluster. You'll start by exploring the AKS Diagnostics
pane.

210 | Monitoring the AKS cluster and the application

Using AKS Diagnostics

When you are experiencing issues in AKS, a good place to start your exploration
is the AKS Diagnostics pane. It provides you with tools that help investigate any
issues related to underlying infrastructure or system cluster components.

Note:

AKS Diagnostics is in preview at the time o writing this book. This means
unctionality might be added or removed.

To access AKS Diagnostics, hit the Diagnose and solve problems option in the AKS
menu. This will open up Diagnostics, as shown in Figure 7.31:

Figure 7.31: Accessing AKS Diagnostics

Using AKS Diagnostics | 211

AKS Diagnostics gives you two tools to diagnose and explore issues. One is Cluster
Insights, and the other is Networking. Cluster Insights uses cluster logs and
conguration on your cluster to perorm a health check and compare your cluster
against best practices. It contains useful information and relevant health indicators
in case anything is miscongured in your cluster. An example output o Cluster
Insights is shown in Figure 7.32:

Figure 7.32: Example output from Cluster Insights

212 | Monitoring the AKS cluster and the application

The Networking section of AKS Diagnostics allows you to interactively troubleshoot
networking issues in your cluster. As you open the Networking view, you are
presented with several questions that will then trigger network health checks and
conguration reviews. Once you select one o those options, the interactive tool
will give you the output from those checks, as shown in Figure 7.33:

Figure 7.33: Diagnosing networking issues using AKS Diagnostics

Azure Monitor metrics and logs | 213

Using AKS Diagnostics is very useful when you are facing infrastructure issues
on your cluster. The tool does a scan o your environment and veries whether
everything is running and congured well. However, it does not scan your
applications. That is where Azure Monitor comes in; it allows you to monitor your
application and access your application logs.

Azure Monitor metrics and logs

Previously in this chapter, you explored the status and metrics of nodes and pods
in your cluster using the kubectl command-line tool. In Azure, you can get more
metrics from nodes and pods and explore the logs from pods in your cluster. Let's
start by exploring AKS Insights in the Azure portal.

AKS Insights

The Insights section of the AKS pane provides most of the metrics you need to
know about your cluster. It also has the ability to drill down to the container level.
You can also see the logs of the container.

Note:

The Insights section o the AKS pane relies on Azure Monitor or containers. I
you created the cluster using the portal deaults, this is enabled by deault.

Kubernetes makes metrics available but doesn't store them. Azure Monitor can be
used to store these metrics and make them available to query over time. To collect
the relevant metrics and logs into Insights, Azure connects to the Kubernetes API
to collect the metrics and logs to then store them in Azure Monitor.

Note:

Logs o a container could contain sensitive inormation. Thereore, the rights
to review logs should be controlled and audited.

Let's explore the Insights tab of the AKS pane, starting with the cluster metrics.

214 | Monitoring the AKS cluster and the application

Cluster metrics

Insights shows the cluster metrics. Figure 7.34 shows the CPU utilization and the
memory utilization of all the nodes in the cluster. You can optionally add additional
lters to lter to a particular namespace, node, or node pool. There also is a live
option, which gives you more real-time information on your cluster status:

Figure 7.34: The Cluster tab shows CPU and memory utilization for the cluster

Azure Monitor metrics and logs | 215

The cluster metrics also show the node count and the number of active pods. The
node count is important, as you can track whether you have any nodes that are in a
Not Ready state:

Figure 7.35: The Cluster tab shows the node count and the number of active pods

The Cluster tab can be used to monitor the status of the nodes in the cluster. Next,
you'll explore the Reports tab.

216 | Monitoring the AKS cluster and the application

Reports

The Reports tab in AKS Insights gives you access to a number o precongured
monitoring workbooks. These workbooks combine text, log queries, metrics, and
parameters together and give you rich interactive reports. You can drill down
into each individual report to get more information and prebuilt log queries. The
available reports are shown in Figure 7.36:

Note

The Reports unctionality is in preview at the time o writing this book.

Figure 7.36: The Reports tab gives you access to precongured monitoring workbooks

Azure Monitor metrics and logs | 217

As an example, you can explore the Deployments workbook. This is shown in
Figure 7.37:

Figure 7.37: The Deployments workbook shows you the status of your deployments

This shows you all the deployments by default, their health, and up-to-date status.
As you can see, it shows you that server1 was temporarily unavailable when you
were doing the exploration with liveness and readiness probes earlier in this
chapter.

218 | Monitoring the AKS cluster and the application

You can drill down further into the status of the individual deployments. If you click
on the Log button highlighted in Figure 7.37, you get redirected to Log Analytics
with a prebuilt query. You can then modify this query and get deeper insights into
your workload, as shown in Figure 7.38.

Figure 7.38: Drilling down in Log Analytics to get more details on your deployments

Note:

The queries used in Log Analytics make use o the Kusto Query Language
(KQL). To learn more about KQL, please reer to the documentation: https://
docs.microsot.com/azure/data-explorer/kusto/concepts/

The Reports tab in AKS Insights gives you a number of prebuilt monitoring
workbooks. The next tab is the Nodes tab.

Azure Monitor metrics and logs | 219

Nodes

The Nodes view shows you detailed metrics for your nodes. It also shows you
which pods are running on each node, as you can see in Figure 7.39:

Figure 7.39: Detailed metrics of the nodes in the Nodes pane

Note that different metrics can be viewed from the dropdown menu right next
to the search bar. If you need even more details, you can click through and get
Kubernetes event logs from your nodes as well:

220 | Monitoring the AKS cluster and the application

Figure 7.40: Click on View Kubernetes event logs to get the logs from a cluster

This will open Azure Log Analytics and will have pre-created a query for you that
shows the logs for your node. In the example in Figure 7.41, you can see that the
node was rebooted a couple of times and hit an InvalidDiskCapacity warning
as well:

Figure 7.41: Log Analytics showing the logs for the nodes

Azure Monitor metrics and logs | 221

This gives you information about the status of your nodes. Next, you'll explore the
Controllers tab.

Controllers

The Controllers tab shows you details on all the controllers (that is, ReplicaSets,
DaemonSets, and so on) on your cluster and the pods running in them. This shows
you a controller-centric view o running pods. For instance, you can nd the
server1 ReplicaSet and see all the pods and containers running in it, as shown in
Figure 7.42:

Figure 7.42: The Controllers tab shows you all the pods running in a ReplicaSet

222 | Monitoring the AKS cluster and the application

The next tab is the Containers tab, which will show you the metrics, logs, and
environment variables for a container.

Container metrics, logs, and environment variables

Clicking on the Containers tab lists the container metrics, environment variables,
and access to its logs, as shown in Figure 7.43:

Figure 7.43: The Containers tab shows us all the individual containers

Note:

You might notice a couple o containers with an Unknown state. I a container
in the Insights pane has an unknown status, that is because Azure Monitor
has logs and inormation about that container, but the container is no longer
running on the cluster.

Azure Monitor metrics and logs | 223

You can get access to the container's logs from this view as well:

Figure 7.44: Access the container's logs

This will show you all the logs that Kubernetes logged from your application.
Earlier in the chapter, you used kubectl to get access to container logs. Using
this approach can be a lot more productive, as you can edit the log queries and
correlate logs from different pods and applications in a single view:

Figure 7.45: Logs are collected and can be queried

224 | Monitoring the AKS cluster and the application

Apart from the logs, this view also shows the environment variables that are set for
the container. To see the environment variables, scroll down in the right cell of the
Containers view:

Figure 7.46: The environment variables set for the container

The nal tab in AKS Insights is the Deployments tab, which you'll explore next.

Deployments

The nal tab is the Deployments tab. This tab gives you an overview of all
deployments in the cluster and allows you to get the denition o the deployment
by selecting it. As you can see in Figure 7.47, you can get this view either in
Describe (in text format) or in RAW (YAML format):

Azure Monitor metrics and logs | 225

Figure 7.47: The Deployments tab in AKS Insights

By using the Insights pane in AKS, you can get detailed information about your
cluster. You explored the different tabs in this section and learned how you
can drill down and get access to customizable log queries to get even more
information.

And that concludes this section. Let's make sure to clean up all the resources
created in this chapter by using the following command:

kubectl delete -f

In this section, you explored monitoring applications running on top of Kubernetes.
You used the AKS Insights tab in the Azure portal to get a detailed view of your
cluster and the containers running on the cluster.

226 | Monitoring the AKS cluster and the application

Summary

You started this chapter by learning how to use different kubectl commands to
monitor an application. Then, you explored how logs created in Kubernetes can be
used to debug that application. The logs contain all the information that is written
to stdout and stderr.

After that, you switched to the Azure portal and started using AKS Diagnostics to
explore infrastructure issues. Lastly, you explored the use of Azure Monitor and
AKS Insights to show the AKS metrics and environment variables, as well as logs
with log ltering.

In the next chapter, you will learn how to connect an AKS cluster to Azure PaaS
services. You will specically ocus on how you can connect an AKS cluster to a
MySQL database managed by Azure.

Section 3: Securing
your AKS cluster and

workloads
Loose lips sink ships is a phrase that describes how easy it can be to jeopardize
the security of a Kubernetes-managed cluster (Kubernetes, by the way, is Greek
for helmsman, as in the helmsman of a ship). If your cluster is left open with the
wrong ports or services exposed, or plain text is used for secrets in application
defnitions, bad actors can take advantage o this negligent security and do pretty
much whatever they want in your cluster.

There are multiple items to consider when securing an Azure Kubernetes Service
(AKS) cluster and workloads running on top of it. In this section, you will learn
about four ways to secure your cluster and applications. You will learn about role-
based access control in Kubernetes and how this can be integrated with Azure
Active Directory (Azure AD). After that, you'll learn how to allow your pods to get
access to Azure resources such as Blob Storage or Key Vault using an Azure AD
pod identity. Subsequently, you'll learn about Kubernetes secrets and how to safely
integrate them with Key Vault. Finally, you'll learn about network security and how
to isolate your Kubernetes cluster.

In this chapter, you will be routinely deleting clusters and creating new clusters
with new functionalities enabled. The reason you will delete existing clusters is to
save costs and optimize the free trial, if you are using it.

228 | Section 3: Securing your AKS cluster and workloads

This section contains the following chapters:

• Chapter 8, Role-based access control in AKS

• Chapter 9, Azure Active Directory pod-managed identities in AKS

• Chapter 10, Storing secrets in AKS

• Chapter 11, Network security in AKS

You will start this section with Chapter 8, Role-based access control in AKS, in which
you will confgure role-based access control in Kubernetes and integrate this with
Azure AD.

8
Role-based access

control in AKS
Up to this point, you've been using a form of access to Azure Kubernetes
Service (AKS) that gave you permissions to create, read, update, and delete
all objects in your cluster. This has worked great for testing and development
but is not recommended on production clusters. On production clusters, the
recommendation is to leverage role-based access control (RBAC) in Kubernetes to
only grant a limited set of permissions to users.

In this chapter, you will explore Kubernetes RBAC in more depth. You will be
introduced to the concept o RBAC in Kubernetes. You will then confgure RBAC in
Kubernetes and integrate it with Azure Active Directory (Azure AD).

The following topics will be covered in this chapter:

• RBAC in Kubernetes

• Enabling Azure AD integration in your AKS cluster

• Creating a user and a group in Azure AD

• Confguring RBAC in AKS

• Verifying RBAC for a user

230 | Role-based access control in AKS

Note

To complete the example on RBAC, you need access to an Azure AD instance,
with global administrator permissions.

Let's start this chapter by explaining RBAC.

RBAC in Kubernetes explained

In production systems, you need to allow different users different levels of access
to certain resources; this is known as RBAC. The beneft o establishing RBAC
is that it not only acts as a guardrail against the accidental deletion of critical
resources but also is an important security feature that limits full access to the
cluster to roles that really need it. On an RBAC-enabled cluster, users can only
access and modify those resources for which they have permission.

Up until now, using Cloud Shell, you have been acting as root, which allowed
you to do anything and everything in the cluster. For production use cases, root
access is dangerous and should be restricted as much as possible. It is a generally
accepted best practice to use the principle of least privilege (PoLP) to sign in to
any computer system. This prevents both access to secure data and unintentional
downtime through the deletion of key resources. Anywhere between 22% and
29% of data loss is attributed to human error. You don't want to be a part of that
statistic.

Kubernetes developers realized this was a problem and added RBAC to Kubernetes
along with the concept of service roles to control access to clusters. Kubernetes
RBAC has three important concepts:

• Role: A role contains a set of permissions. A role defaults to no permissions,
and every permission needs to be specifcally called out. Examples o
permissions include get, watch, and list. The role also contains which
resources these permissions are given to. Resources can be either all pods,
deployments, and so on, or can be a specifc object (such as pod/mypod).

RBAC in Kubernetes explained | 231

• Subject: The subject is either a person or a service account that is assigned
a role. In AKS clusters integrated with Azure AD, these subjects can be Azure
AD users or groups.

• RoleBinding: A RoleBinding links a subject to a role in a certain namespace
or, in the case of a ClusterRoleBinding, the whole cluster.

An important concept to understand is that when interfacing with AKS, there are
two layers of RBAC: Azure RBAC and Kubernetes RBAC, as shown in Figure 8.1.
Azure RBAC deals with the roles given to people to make changes in Azure, such as
creating, modifying, and deleting clusters. Kubernetes RBAC deals with the access
rights to resources in a cluster. Both are independent control planes but can use
the same users and groups originating in Azure AD.

Figure 8.1: Two diferent RBAC planes, Azure and Kubernetes

RBAC in Kubernetes is an optional feature. The default in AKS is to create clusters
that have RBAC enabled. However, by default, the cluster is not integrated with
Azure AD. This means that by default you cannot grant Kubernetes permissions to
Azure AD users. In the coming section, you will enable Azure AD integration in your
cluster.

232 | Role-based access control in AKS

Enabling Azure AD integration in your AKS cluster

In this section, you will update your existing cluster to include Azure AD
integration. You will do this using the Azure portal:

Note

Once a cluster has been integrated with Azure AD, this unctionality cannot be
disabled.

1. To start, you will need an Azure AD group. You will later give admin privileges
for your AKS cluster to this group. To create this group, search for azure
active directory in the Azure search bar:

Figure 8.2: Searching for azure active directory in the Azure search bar

Enabling Azure AD integration in your AKS cluster | 233

2. In the left pane, select Groups, which will bring you to the All groups screen.
Click + New Group, as shown in Figure 8.3:

Figure 8.3: Creating a new Azure AD group

3. On the resulting page, create a security group and give it a name and
description. Select your user as the owner and a member of this group. Click
the Create button on the screen:

Figure 8.4: Providing details for creating the Azure AD group

234 | Role-based access control in AKS

4. Now that this group is created, search for your Azure cluster in the Azure
search bar to open the AKS pane:

Figure 8.5: Searching for your cluster in the Azure search bar

5. In the AKS pane, select Cluster conguration under Settings. In this pane,
you will be able to turn on AKS-managed Azure Active Directory. Enable the
functionality and select the Azure AD group you created earlier to set as the
admin Azure AD group. Finally, hit the Save button in the command bar, as
shown in Figure 8.6:

Figure 8.6: Enabling AKS-managed Azure Active Directory and clicking the Save button

Creating a user and group in Azure AD | 235

This enables Azure AD–integrated RBAC on your AKS cluster. In the next section,
you will create a new user and a new group that will be used in the section
afterward to set up and test RBAC in Kubernetes.

Creating a user and group in Azure AD

In this section, you will create a new user and a new group in Azure AD. You will
use them later on in the chapter to assign them permissions to your AKS cluster:

Note

You need the User Administrator role in Azure AD to be able to create users
and groups.

1. To start with, search for azure active directory in the Azure search bar:

Figure 8.7: Searching for azure active directory in the search bar

236 | Role-based access control in AKS

2. Click on All users in the left pane. Then select + New user to create a new user:

Figure 8.8: Clicking on + New user to create a new user

3. Provide the information about the user, including the username. Make sure to
note down the password, as this will be required to sign in:

Figure 8.9: Providing the user details

Creating a user and group in Azure AD | 237

4. Once the user is created, go back to the Azure AD pane and select Groups.
Then click the + New group button to create a new group:

Figure 8.10: Clicking on + New group to create a new group

5. Create a new security group. Call the group handson aks users and add Tim as
a member of the group. Then hit the Create button at the bottom:

Figure 8.11: Providing the group type, group name, and group description

238 | Role-based access control in AKS

6. You have now created a new user and a new group. Next, you'll make that user
a cluster user in AKS RBAC. This enables them to use the Azure CLI to get
access to the cluster. To do that, search for your cluster in the Azure search
bar:

Figure 8.12: Searching for your cluster in the Azure search bar

7. In the cluster pane, click on Access control (IAM) and then click on the + Add
button to add a new role assignment. Select Azure Kubernetes Service Cluster
User Role and assign that to the new user you just created:

Figure 8.13: Assigning the cluster user role to the new user you created

Creating a user and group in Azure AD | 239

8. As you will also be using Cloud Shell with the new user, you will need to give
them contributor access to the Cloud Shell storage account. First, search for
storage in the Azure search bar:

Figure 8.14: Searching for storage in the Azure search bar

9. There should be a storage account under Resource group with a name that
starts with cloud-shell-storage. Click on the resource group:

Figure 8.15: Selecting the resource group

240 | Role-based access control in AKS

10. Go to Access control (IAM) and click on the + Add button. Give the Storage
Account Contributor role to your newly created user:

Figure 8.16: Assigning Storage Account Contributor role to the new user

This has concluded the creation of a new user and a group and giving that user
access to AKS. In the next section, you will confgure RBAC or that user and group
in your AKS cluster.

Conguring RBAC in AKS

To demonstrate RBAC in AKS, you will create two namespaces and deploy the
Azure voting application in each namespace. You will give the group cluster-wide
read-only access to pods, and you will give the user the ability to delete pods in
only one namespace. Practically, you will need to create the following objects in
Kubernetes:

• ClusterRole to give read-only access

• ClusterRoleBinding to grant the group access to this role

• Role to give delete permissions in the delete-access namespace

• RoleBinding to grant the user access to this role

Conguring RBAC in AKS | 241

Figure 8.17: The group getting read-only access to the whole cluster, and the user getting delete
permissions to the delete-access namespace

Let's set up the different roles on your cluster:

1. To start our example, you will need to retrieve the ID of the group. The
following commands will retrieve the group ID:

az ad group show -g 'handson aks users' \
--query objectId -o tsv

This will show your group ID. Note this down because you'll need it in the next
steps:

Figure 8.18: Getting the group ID

2. In Kubernetes, you will create two namespaces for this example:

kubectl create ns no-access
kubectl create ns delete-access

3. You will also deploy the azure-vote application in both namespaces:

kubectl create -f azure-vote.yaml -n no-access
kubectl create -f azure-vote.yaml -n delete-access

242 | Role-based access control in AKS

4. Next, you will create the ClusterRole object. This is provided in the
clusterRole.yaml fle:

1 apiVersion: rbac.authorization.k8s.io/v1
2 kind: ClusterRole
3 metadata:
4 name: readOnly
5 rules:
6 - apiGroups: [""]
7 resources: ["pods"]
8 verbs: ["get", "watch", "list"]

Let's have a closer look at this fle:

• Line 2: Defnes the creation o a ClusterRole instance

• Line 4: Gives a name to our ClusterRole instance

• Line 6: Gives access to all API groups

• Line 7: Gives access to all pods

• Line 8: Gives access to the actions get, watch, and list

We will create ClusterRole using the following command:

kubectl create -f clusterRole.yaml

5. The next step is to create a cluster role binding. The binding links the role to a
user or a group. This is provided in the clusterRoleBinding.yaml fle:

1 apiVersion: rbac.authorization.k8s.io/v1
2 kind: ClusterRoleBinding
3 metadata:
4 name: readOnlyBinding
5 roleRef:
6 kind: ClusterRole
7 name: readOnly
8 apiGroup: rbac.authorization.k8s.io
9 subjects:
10 - kind: Group
11 apiGroup: rbac.authorization.k8s.io
12 name: "<group-id>"

Conguring RBAC in AKS | 243

Let's have a closer look at this fle:

• Line 2: Defnes that we are creating a ClusterRoleBinding instance.

• Line 4: Gives a name to ClusterRoleBinding.

• Lines 5–8: Refer to the ClusterRole object we created in the previous
step

• Lines 9–12: Refer to your group in Azure AD. Make sure to replace
<group-id> on line 12 with the group ID you got earlier.

We can create ClusterRoleBinding using the following command:

kubectl create -f clusterRoleBinding.yaml

6. Next, you'll create a role that is limited to the delete-access namespace. This
is provided in the role.yaml fle:

1 apiVersion: rbac.authorization.k8s.io/v1
2 kind: Role
3 metadata:
4 name: deleteRole
5 namespace: delete-access
6 rules:
7 - apiGroups: [""]
8 resources: ["pods"]
9 verbs: ["delete"]

This fle is similar to the ClusterRole object from earlier. There are two
meaningful differences:

• Line 2: Defnes that you are creating a Role instance and not a
ClusterRole instance

• Line 5: Defnes the namespace this role is created in

You can create Role using the following command:

kubectl create -f role.yaml

244 | Role-based access control in AKS

7. Finally, you will create a RoleBinding instance that links our user to the
namespace role. This is provided in the roleBinding.yaml fle:

1 apiVersion: rbac.authorization.k8s.io/v1
2 kind: RoleBinding
3 metadata:
4 name: deleteBinding
5 namespace: delete-access
6 roleRef:
7 kind: Role
8 name: deleteRole
9 apiGroup: rbac.authorization.k8s.io
10 subjects:
11 - kind: User
12 apiGroup: rbac.authorization.k8s.io
13 name: "<user e-mail address>"

This fle is similar to the ClusterRoleBinding object from earlier. There are a
couple of meaningful differences:

• Line 2: Defnes the creation o a RoleBinding instance and not a
ClusterRoleBinding instance

• Line 5: Defnes the namespace this RoleBinding instance is created in

• Line 7: Refers to a regular role and not a ClusterRole instance

• Lines 11–13: Defnes a user instead o a group

You can create RoleBinding using the following command:

kubectl create -f roleBinding.yaml

This has concluded the requirements for RBAC. You have created two roles—
ClusterRole and one namespace-bound role, and set up two RoleBindings
objects—ClusterRoleBinding and the namespace-bound RoleBinding. In the next
section, you will explore the impact of RBAC by signing in to the cluster as the new
user.

Veriying RBAC or a user | 245

Verifying RBAC for a user

To verify that RBAC works as expected, you will sign in to the Azure portal using
the newly created user. Go to https://portal.azure.com in a new browser, or an
InPrivate window, and sign in with the newly created user. You will be prompted
immediately to change your password. This is a security feature in Azure AD to
ensure that only that user knows their password:

Figure 8.19: You will be asked to change your password

246 | Role-based access control in AKS

Once you have changed your password, you can start testing the different RBAC
roles:

1. You will start this experiment by setting up Cloud Shell for the new user.
Launch Cloud Shell and select Bash:

Figure 8.20: Selecting Bash in Cloud Shell

2. In the next dialog box, select Show advanced settings:

Figure 8.21: Selecting Show advanced settings

Veriying RBAC or a user | 247

3. Then, point Cloud Shell to the existing storage account and create a new fle
share:

Figure 8.22: Pointing to the existing storage account and creating a new le share

4. Once Cloud Shell is available, get the credentials to connect to the AKS cluster:

az aks get-credentials -n handsonaks -g rg-handsonaks

Then, try a command in kubectl. Let's try to get the nodes in the cluster:

kubectl get nodes

Since this is the frst command executed against an RBAC-enabled cluster, you
are asked to sign in again. Browse to https://microsoft.com/devicelogin and
provide the code Cloud Shell showed you (this code is highlighted in Figure
8.24). Make sure you sign in here with your new user credentials:

Figure 8.23: Copying and pasting the code Cloud Shell showed you in the prompt

248 | Role-based access control in AKS

After you have signed in, you should get a Forbidden error message from
kubectl, informing you that you don't have permission to view the nodes in the
cluster. This was expected since the user is confgured only to have access to
pods:

Figure 8.24: The prompt asking you to sign in and the Forbidden message

5. Now you can verify that your user has access to view pods in all namespaces
and that the user has permission to delete pods in the delete-access
namespace:

kubectl get pods -n no-access
kubectl get pods -n delete-access

This should succeed for both namespaces. This is due to the ClusterRole
object confgured or the user's group:

Figure 8.25: The user has access to view pods in both namespaces

Veriying RBAC or a user | 249

6. Let's also verify the delete permissions:

kubectl delete pod --all -n no-access
kubectl delete pod --all -n delete-access

As expected, this is denied in the no-access namespace and allowed in the
delete-access namespace, as seen in Figure 8.26:

Figure 8.26: Deletes are denied in the no-access namespace and allowed in the delete-access
namespace

In this section, you have verifed the unctionality o RBAC on your Kubernetes
cluster. Since this is the last section of this chapter, let's make sure to clean up the
deployments and namespaces in the cluster. Make sure to execute these steps from
Cloud Shell with your main user, not the new user:

kubectl delete -f azure-vote.yaml -n no-access
kubectl delete -f azure-vote.yaml -n delete-access
kubectl delete -f .
kubectl delete ns no-access
kubectl delete ns delete-access

This concludes the overview of RBAC on AKS.

250 | Role-based access control in AKS

Summary

In this chapter, you learned about RBAC on AKS. You enabled Azure AD–integrated
RBAC in your cluster. After that, you created a new user and group and set up
different RBAC roles on your cluster. Finally, you signed in using that user and were
able to veriy that the RBAC roles that were confgured gave you limited access to
the cluster you were expecting.

This deals with how users can get access to your Kubernetes cluster. The pods
running on your cluster might also need an identity in Azure AD that they can
use to access resources in Azure services such as Blob Storage or Key Vault. You
will learn more about this use case and how to set this up using an Azure AD pod
identity in AKS in the next chapter.

9
Azure Active Directory

pod-managed
identities in AKS

In the previous chapter, Chapter 8, Role-based access control in AKS, you integrated
your AKS cluster with Azure Active Directory (Azure AD). You then assigned
Kubernetes roles to users and groups in Azure AD. In this chapter, you will explore
how you can integrate your applications running on AKS with Azure AD, and you
will learn how you can give your pods an identity in Azure so they can interact with
other Azure resources.

In Azure, application identities use a functionality called service principals. A
service principal is the equivalent of a service account in the cloud. An application
can use a service principal to authenticate to Azure AD and get access to resources.
Those resources could be either Azure resources such as Azure Blob Storage
or Azure Key Vault, or they could be applications that you developed that are
integrated with Azure AD.

252 | Azure Active Directory pod-managed identities in AKS

There are two ways to authenticate a service principal: you can either use a
password or a combination o a certicate and a private key. Although these are
secure ways to authenticate your applications, managing passwords or certicates
and the rotation associated with them can be cumbersome.

Managed identities in Azure are a unctionality that makes authenticating to a
service principal easier. It works by assigning an identity to a compute resource in
Azure, such as a virtual machine or an Azure function. Those compute resources
can authenticate using that managed identity by calling an endpoint that only that
machine can reach. This is a secure type of authentication that does not require
you to manage passwords or certicates.

Azure AD pod-managed identities allow you to assign managed identities to pods
in Kubernetes. Since pods in Kubernetes run on virtual machines, by default, each
pod would be able to access the managed identity endpoint and authenticate
using that identity. Using Azure AD pod-managed identities, pods can no longer
reach the internal endpoint for the virtual machine, and rather only get access to
identities assigned to that specic pod.

In this chapter, you'll congure an Azure AD pod-managed identity on an AKS
cluster and use it to get access to Azure Blob Storage. In the next chapter, you will
then use these Azure AD pod-managed identities to get access to Azure Key Vault
and manage Kubernetes secrets.

The ollowing topics will be covered briefy in this chapter:

• An overview of Azure AD pod-managed identities

• Setting up a new cluster with Azure AD pod-managed identities

• Linking an identity to your cluster

• Using a pod with managed identity

Let's start with an overview of Azure AD pod-managed identities.

An overview o Azure AD pod-managed identities | 253

An overview of Azure AD pod-managed identities

The goal of this section is to describe Azure managed identities and Azure AD
pod-managed identities.

As explained in the introduction, managed identities in Azure are a way to securely
authenticate applications running inside Azure. There are two types of managed
identities in Azure. The dierence between them is how they are linked to
resources:

• System assigned: This type o managed identity is linked 1:1 to the resource
(such as a virtual machine) itself. This managed identity also shares the
lifecycle of the resource, meaning that once the resource is deleted, the
managed identity is also deleted.

• User assigned: User-assigned managed identities are standalone Azure
resources. A user-assigned managed identity can be linked to multiple
resources. When a resource is deleted, the managed identity is not deleted.

Both types o managed identities work the same way once they are created and
linked to a resource. This is how managed identities work rom an application
perspective:

1. Your application running in Azure requests a token to the Instance Metadata
Service (IMDS). The IMDS is only available to that resource itself, at a
non-routable IP address (169.254.169.254).

2. The IMDS will request a token rom Azure AD. It uses a certicate that is
congured or your managed identity and is only known by the IMDS.

3. Azure AD will return a token to the IMDS, which will, in turn, return that token
to your application.

4. Your application can use this token to authenticate to other resources, or
instance, Azure Blob Storage.

254 | Azure Active Directory pod-managed identities in AKS

Figure 9.1: Managed identity in an Azure virtual machine

When running multiple pods on a single virtual machine in a Kubernetes cluster, by
default each pod can reach the IMDS endpoint. This means that each pod could get
access to the identities congured or that virtual machine.

The Azure AD pod-managed identities add-on or AKS congures your cluster in
such a way that pods can no longer access the IMDS endpoint directly to request
an access token. It congures your cluster in such a way that pods trying to access
to IMDS endpoint (1) will connect to a DaemonSet running on the cluster. This
DaemonSet is called the node managed identity (NMI). The NMI will verify which
identities that pod should have access to. I the pod is congured to have access
to the requested identity, then the DaemonSet will connect to the IMDS (2 to 5) to
get the token, and then deliver the token to the pod (6). The pods can then use this
token to access Azure resources (7).

An overview o Azure AD pod-managed identities | 255

Figure 9.2: Azure AD pod-managed identity

This way, you can control which pods on your cluster have access to certain
identities.

Azure AD pod-managed identities were initially developed as an open-source
project by Microsoft on GitHub. More recently, Microsoft has released Azure
AD pod-managed identities as an AKS add-on. The benet o using Azure AD
pod-managed identities as an AKS add-on is that the functionality is supported by
Microsoft and the software will be updated automatically as part of regular cluster
operations.

Note

At the time o writing, the Azure AD pod-managed identities add-on is in
preview. Currently, it is also not supported or Windows containers. Using
preview unctionality or product use cases is not recommended.

Now that you know how Azure AD pod-managed identities work, let's set it up on
an AKS cluster in the next section.

256 | Azure Active Directory pod-managed identities in AKS

Setting up a new cluster with Azure AD pod-managed
identities

As mentioned in the previous section, there are two ways to set up Azure AD
pod-managed identities in AKS. It can either be done using the open-source
project on GitHub, or by setting it up as an AKS add-on. By using the add-on, you'll
get a supported conguration, which is why you'll set up a cluster using the add-on
in this section.

At the time of writing, it is not yet possible to enable the Azure AD pod-managed
identities add-on on an existing cluster, which is why in the following instructions
you'll delete your existing cluster and create a new one with the add-on installed.
By the time you are reading this, it might be possible to enable this add-on on an
existing cluster without recreating your cluster.

Also, because the functionality is in preview at the time of this writing, you'll have
to register or the preview. That'll be the rst step in this section:

1. Start by opening Cloud Shell and registering for the preview of Azure AD
pod-managed identities:

az feature register --name EnablePodIdentityPreview \
--namespace Microsoft.ContainerService

2. You'll also need a preview extension of the Azure CLI, which you can install
using the following command:

az extension add --name aks-preview

3. Now you can go ahead and delete your existing cluster. This is required to
ensure you have enough core quota available in Azure. You can do this using
the following command:

az aks delete -n handsonaks -g rg-handsonaks --yes

Setting up a new cluster with Azure AD pod-managed identities | 257

4. Once your previous cluster is deleted, you'll have to wait until the pod identity
preview is registered on your subscription. You can use the following command
to verify this status:

az feature show --name EnablePodIdentityPreview \
--namespace Microsoft.ContainerService -o table

Wait until the status shows as registered, as shown in Figure 9.3:

Figure 9.3: Waiting for the feature to be registered

5. If the feature is registered and your old cluster is deleted, you need to refresh
the registration o the namespace beore creating a new cluster. Let's rst
refresh the registration of the namespace:

az provider register --namespace Microsoft.ContainerService

6. And now you can create a new cluster using the Azure AD pod-managed
identities add-on. You can use the following command to create a new cluster
with the add-on enabled:

az aks create -g rg-handsonaks -n handsonaks \
--enable-managed-identity --enable-pod-identity \
--network-plugin azure --node-vm-size Standard_DS2_v2 \
--node-count 2 --generate-ssh-keys

7. This will take a couple o minutes to nish. Once the command nishes, obtain
the credentials to access your cluster and verify you can access your cluster
using the following commands:

az aks get-credentials -g rg-handsonaks \
-n handsonaks --overwrite-existing

kubectl get nodes

258 | Azure Active Directory pod-managed identities in AKS

This should return an output similar to Figure 9.4:

Figure 9.4: Getting cluster credentials and verifying access

Now you have a new AKS cluster with Azure AD pod-managed identities enabled. In
the next section, you will create a managed identity and link it to your cluster.

Linking an identity to your cluster

In the previous section, you created a new cluster with Azure AD pod-managed
identities enabled. Now you are ready to create a managed identity and link it to
your cluster. Let's get started:

1. To start, you will create a new managed identity using the Azure portal. In
the Azure portal, look or managed identity in the search bar, as shown in
Figure 9.5:

Figure 9.5: Navigating to Managed Identities in the Azure portal

Linking an identity to your cluster | 259

2. In the resulting pane, click the + New button at the top. To organize the
resources for this chapter together, it's recommended to create a new resource
group. In the resulting pane, click the Create new button to create a new
resource group. Call it aad-pod-id, as shown in Figure 9.6:

Figure 9.6: Creating a new resource group

3. Now, select the region you created your cluster in as the region for your
managed identity and give it a name (aad-pod-id in this example), as shown in
Figure 9.7. To nish, click the Review + create button and in the nal window
click the Create button to create your managed identity:

260 | Azure Active Directory pod-managed identities in AKS

Figure 9.7: Providing Instance details for the managed identity

4. Once the managed identity has been created, hit the Go to resource button
to go to the resource. Here, you will need to copy the client ID and the
resource ID. They will be used later in this chapter. Copy and paste the values
somewhere that you can access later. First, you will need the client ID of the
managed identity. You can nd that in the Overview pane of the managed
identity, as shown in Figure 9.8:

Figure 9.8: Getting the client ID of the managed identity

Linking an identity to your cluster | 261

5. Finally, you will also need the resource ID o the managed identity. You can nd
that in the Properties pane of the managed identity, as shown in Figure 9.9:

Figure 9.9: Getting the resource ID of the managed identity

6. Now you are ready to link the managed identity to your AKS cluster. To do this,
you will run a command in Cloud Shell, and afterward you will be able to verify
that the identity is available in your cluster. Let's start with linking the identity.
Make sure to replace <Managed identity resource ID> with the resource you
copied earlier:

az aks pod-identity add --resource-group rg-handsonaks \
--cluster-name handsonaks --namespace default \
--name access-blob-id \
--identity-resource-id <Managed identity resource ID>

262 | Azure Active Directory pod-managed identities in AKS

7. You can veriy that your identity was successully linked to your cluster by
running the following command:

kubectl get azureidentity

This should give you an output similar to Figure 9.10:

Figure 9.10: Verifying the availability of the identity in the cluster

This means that the identity is now available for you to use in your cluster. How
you do this will be explained in the next section.

Using a pod with managed identity

In the previous section, you created a managed identity and linked it to your
cluster. In this section, you will create a new blob storage account and give the
managed identity you created permission over this storage account. Then, you will
create a new pod in your cluster that can use that managed identity to interact
with that storage account. Let's get started by creating a new storage account:

1. To create a new storage account, look or storage accounts in the Azure
search bar, as shown in Figure 9.11:

Figure 9.11: Looking for storage accounts in the Azure search bar

In the resulting pane, click the + New button at the top of the screen as shown
in Figure 9.12:

Using a pod with managed identity | 263

Figure 9.12: Creating a new storage account

Select the aad-pod-id resource group you created earlier, give the account a
unique name, and select the same region as your cluster. To optimize costs, it
is recommended that you select the Standard performance, StorageV2 as the
Account kind, and Locally-redundant storage (LRS) for Replication, as shown in
Figure 9.13:

Figure 9.13: Conguring your new storage account

264 | Azure Active Directory pod-managed identities in AKS

2. Ater you have provided all the values, click Review + create and then the Create
button on the resulting screen. This will take about a minute to create. Once
the storage account is created, click the Go to resource button to move on to
the next step.

3. First, you will give the managed identity access to the storage account. To do
this, click Access Control (IAM) in the let-hand navigation bar, click + Add and
Add role assignment. Then select the Storage Blob Data Contributor role, select
User assigned managed identity in the Assign access to dropdown, and select
the access-blob-idmanaged identity you created, as shown in Figure 9.14. Finally,
hit the Save button at the bottom of the screen:

Figure 9.14: Providing access to the storage account for the managed identity

Using a pod with managed identity | 265

4. Next, you will upload a random le to this storage account. Later, you will try
to access this le rom within a Kubernetes pod to veriy you have access to
the storage account. To do this, go back to the Overview pane of the storage
account. There, click on Containers, as shown in Figure 9.15:

Figure 9.15: Clicking on Containers in the overview pane

266 | Azure Active Directory pod-managed identities in AKS

5. Then hit the + Container button at the top of the screen. Give the container a
name, such as uploadedfiles. Make sure to set Public access level to Private
(no anonymous access), and then click the Create button at the bottom of the
screen, as shown in Figure 9.16:

Figure 9.16: Creating a new blob storage container

6. Finally, upload a random le into this storage container. To do this, click
on the container name, and then click the Upload button at the top of the
screen. Select a random le rom your computer and click Upload as shown in
Figure 9.17:

Figure 9.17: Uploading a new le to blob storage

Using a pod with managed identity | 267

7. Now that you have a le in blob storage, and your managed identity has
access to this storage account, you can go ahead and try connecting to it from
Kubernetes. To do this, you will create a new deployment using the Azure CLI
container image. This deployment will contain a link to the managed identity
that was created earlier. The deployment le is provided in the code les or
this chapter as deployment-with-identity.yaml:

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: access-blob
5 spec:
6 selector:
7 matchLabels:
8 app: access-blob
9 template:
10 metadata:
11 labels:
12 app: access-blob
13 aadpodidbinding: access-blob-id
14 spec:
15 containers:
16 - name: azure-cli
17 image: mcr.microsoft.com/azure-cli
18 command: ["/bin/bash", "-c", "sleep inf"]

There are a ew things to draw attention to in the denition o this deployment:

• Line 13: This is where you link the pod (created by the deployment) with
the managed identity. Any pod with that label will be able to access the
managed identity.

• Line 16-18: Here, you dene which container will be created in this pod.
As you can see, the image (mcr.microsoft.com/azure-cli) is referring
to the Azure CLI, and you're running a sleep command in this container
to make sure the container doesn't continuously restart.

8. You can create this deployment using the following command:

kubectl create -f deployment-with-identity.yaml

268 | Azure Active Directory pod-managed identities in AKS

9. Watch the pods until the access-blob pod is in the Running state. Then copy
and paste the name of the access-blob pod and exec into it using the following
command:

kubectl exec -it <access-blob pod name> -- sh

10. Once you are connected to the pod, you can authenticate to the Azure API
using the following command. Replace <client ID of managed identity>
with the client ID you copied earlier:

az login --identity -u <client ID of managed identity> \
--allow-no-subscription -o table

This should return you an output similar to Figure 9.18:

Figure 9.18: Logging in to the Azure CLI using the Azure AD pod-managed identity

11. Now, you can try accessing the blob storage account and download the le. You
can do this by executing the following command:

az storage blob download --account-name <storage account name> \
--container-name <container name> --auth-mode login \
--fle <flename> --name <flename> -o table

This should return you an output similar to Figure 9.19:

Figure 9.19: Downloading a blob le using the managed identity

12. You can now exit the container using the exit command.

Using a pod with managed identity | 269

13. I you would like to veriy that pods that don't have a managed identity
congured and cannot download the le, you can use the le called
deployment-without-identity.yaml:

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: no-access-blob
5 spec:
6 selector:
7 matchLabels:
8 app: no-access-blob
9 template:
10 metadata:
11 labels:
12 app: no-access-blob
13 spec:
14 containers:
15 - name: azure-cli
16 image: mcr.microsoft.com/azure-cli
17 command: ["/bin/bash", "-c", "sleep inf"]

As you can see, this deployment isn't similar to the deployment you created
earlier in the chapter. The dierence here is that the pod denition doesn't
contain the label with the Azure AD pod-managed identity. This means that this
pod won't be able to log in to Azure using any managed identity. You can create
this deployment using the following:

kubectl create -f deployment-without-identity.yaml

14. Watch the pods until the no-access-blob pod is in the Running state. Then
copy and paste the name of the access-blob pod and exec into it using the
following command:

kubectl exec -it <no-access-blob pod name> -- sh

270 | Azure Active Directory pod-managed identities in AKS

15. Once you are connected to the pod, you can try to authenticate to the Azure
API using the following command, which should fail:

az login --identity -u <client ID of managed identity> \
--allow-no-subscription -o table

This should return an output similar to Figure 9.20:

Figure 9.20: The new pod cannot authenticate using the managed identity

16. Finally, you can exit the container using the exit command.

This has successfully shown you how to use Azure AD pod-managed identities to
connect to blob storage from within your Kubernetes cluster. A deployment with
an identity label could log in to the Azure CLI and then access blob storage. A
deployment without this identity label didn't get permission to log in to the Azure
CLI, and hence was also not able to access blob storage.

This has concluded this chapter. Let's make sure to delete the resources you
created for this chapter:

az aks pod-identity delete --resource-group rg-handsonaks \
--cluster-name handsonaks --namespace default \
--name access-blob-id

az group delete -n aad-pod-id --yes
kubectl delete -f

You can keep the cluster you created in this chapter since in the next chapter you
will use Azure AD pod-managed identities to access Key Vault secrets.

Summary | 271

Summary

In this chapter, you've continued your exploration of security in AKS. Whereas
Chapter 8, Role-based access control in AKS, focused on identities for users,
this chapter focused on identities for pods and applications running in pods.
You learned about managed identities in Azure and how you can use Azure AD
pod-managed identities in Azure to assign those managed identities to pods.

You created a new cluster with the Azure AD pod-managed identities add-on
enabled. You then created a new managed identity and linked that to your cluster.
In the nal section, you gave this identity permissions over a blob storage account
and nally veried that pods with the managed identity were able to log in to Azure
and download les, but pods without the managed identity couldn't log in to Azure.

In the next chapter, you'll learn more about Kubernetes secrets. You'll learn about
the built-in secrets and then also learn how you can securely connect Kubernetes
to Azure Key Vault, and even use Azure AD pod-managed identities to do this.

10
Storing secrets

in AKS
All production applications require some sensitive information to function, such as
passwords or connection strings. Kubernetes has a pluggable back end to manage
these secrets. Kubernetes also provides multiple ways of using the secrets in your
deployment. The ability to manage secrets and use them properly will make your
applications more secure.

You have already used secrets previously in this book. You used them when
connecting to the WordPress site to create blog posts in Chapter 3, Application
deployment on AKS, and Chapter 4, Building scalable applications. You also used
secrets in Chapter 6, Securing your application with HTTPS, when you were
confguring the Application Gateway Ingress Controller with TLS.

Kubernetes has a built-in secret system that stores secrets in a semi-encrypted
fashion in the default Kubernetes database. This system works well but isn't the
most secure way to deal with secrets in Kubernetes. In AKS, you can make use o a
project called Azure Key Vault provider for Secrets Store CSI driver (CSI driver),
which is a more secure way o working with Secrets in Kubernetes. This project
allows you to store and retrieve secrets in/from Azure Key Vault.

274 | Storing secrets in AKS

In this chapter, you will learn about the various built-in secret types in Kubernetes
and the dierent ways in which you can create these Secrets. Ater that, you will
install the CSI driver on your cluster, and use it to retrieve Secrets.

Specifcally, you will cover the ollowing topics in this chapter:

• Different types of secret in Kubernetes

• Creating and using secrets in Kubernetes

• Installing the Azure Key Vault provider or secrets Store CSI driver

• Using the Azure Key Vault provider or secrets Store CSI driver

Let's start with exploring the dierent secret types in Kubernetes.

Diferent secret types in Kubernetes

As mentioned in the introduction to this chapter, Kubernetes comes with a default
secrets implementation. This default implementation will store secrets in the etcd
database that Kubernetes uses to store all object metadata. When Kubernetes
stores secrets in etcd, it will store them in base64-encoded format. Base64 is a
way to encode data in an obfuscated manner but is not a secure way of doing
encryption. Anybody with access to base64-encoded data can easily decode it. AKS
adds a layer of security on top of this by encrypting all data at rest within the Azure
platform.

The default secret implementation in Kubernetes allows you to store multiple types
o Secrets:

• Opaque secrets: These can contain any arbitrary user-defned secret or
data.

• Service account tokens: These are used by Kubernetes pods or built-in
cluster RBAC.

• Docker confg secrets: These are used to store Docker registry credentials
or Docker command-line confguration.

• Basic authentication secrets: These are used or storing authentication
information in the form of a username and password.

• SSH authentication secrets: These are used to store SSH private keys.

Creating secrets in Kubernetes | 275

• TLS certifcates: These are used to store TLS/SSL certifcates.

• Bootstrap token Secrets: These are used to store bearer tokens that are
used when creating new clusters or joining new nodes to an existing cluster.

As a user o Kubernetes, you most typically will work with opaque secrets and TLS
certifcates. You've already worked with TLS secrets in Chapter 6, Securing your
application with HTTPS. In this chapter, you will ocus on opaque secrets.

Kubernetes provides three ways o creating secrets, as ollows:

• Creating secrets rom fles

• Creating secrets rom YAML or JSON defnitions

• Creating secrets rom the command line

Using any of the preceding methods, you can create any type of secret.

Kubernetes gives you two ways o consuming secrets:

• Using secrets as an environment variable

• Mounting secrets as a fle in a pod

In the next section, you will create secrets using the three ways mentioned here,
and you will later consume them using both the methods listed here.

Creating secrets in Kubernetes

In Kubernetes, there are three dierent ways to create secrets: rom fles, rom
YAML or JSON defnitions, or directly rom the command line. Let's start the
exploration o how to create secrets by creating them rom fles.

Creating Secrets rom les

The frst way to create secrets in Kubernetes is to create them rom a fle. In this
way, the contents o the fle will become the value o the secret, and the flename
will be the identifer o each value within the secret.

276 | Storing secrets in AKS

Let's say that you need to store a URL and a secure token or accessing an API.
To achieve this, ollow these steps:

1. Store the URL in secreturl.txt, as ollows:

echo https://my-url-location.topsecret.com \
> secreturl.txt

2. Store the token in another fle, as ollows:

echo 'superSecretToken' > secrettoken.txt

3. Let Kubernetes create the secret rom the fles, as ollows:

kubectl create secret generic myapi-url-token \
--rom-fle=./secreturl.txt --rom-fle=./secrettoken.txt

Please note that you are creating a single secret object in Kubernetes, referring
to both text fles. In this command, you are creating an opaque secret by using
the generic keyword.

The command should return an output similar to Figure 10.1:

Figure 10.1: Creating an opaque secret

4. You can check whether the secrets were created in the same way as any other
Kubernetes resource by using the get command:

kubectl get secrets

This command will return an output similar to Figure 10.2:

Figure 10.2: List of the created secrets

Creating secrets in Kubernetes | 277

Here, you will see the secret you just created, and any other secrets that are
present in the default namespace. The secret is of the Opaque type, which
means that, from Kubernetes' perspective, the schema of the contents is
unknown. It is an arbitrary key-value pair with no constraints, as opposed to,
or example, SSH auth or TLS secrets, which have a schema that will be verifed
as having the required details.

5. For more details about the secret, you can also run the describe command:

kubectl describe secrets myapi-url-token

You will get an output similar to Figure 10.3:

Figure 10.3: Description of the created secret

As you can see, neither of the preceding commands displayed the actual
secret values.

6. To see the secret's value, you can run the ollowing command:

kubectl get -o yaml secrets/myapi-url-token

You will get an output similar to Figure 10.4:

278 | Storing secrets in AKS

Figure 10.4: Using the -o yaml switch in kubectl get secret fetches the encoded value of the secret

The data is stored as key-value pairs, with the flename as the key and the
base64-encoded contents o the fle as the value.

7. The preceding values are base64-encoded. Base64 encoding isn't secure. It
obfuscates the secret so it isn't easily readable by an operator, but any bad
actor can easily decode a base64-encoded secret. To get the actual values, you
can run the ollowing command:

echo 'c3VwZXJTZWNyZXRUb2tlbgo=' | base64 -d
echo 'aHR0cHM6Ly9teS1zZWNyZXQtdXJsLWxvY2F0aW9uLnRvcHNlY3JldC5jb20K'|
base64 -d

You will get the values o the secrets that were originally created:

Figure 10.5: Base64-encoded secrets can easily be decoded

Creating secrets in Kubernetes | 279

This shows you that the secrets are not securely encrypted in the default
Kubernetes secret store.

In this section, you were able to create a secret containing an example URL with a
secure token using fles as the source. You were also able to get the actual secret
values back by decoding the base64-encoded secrets.

Let's move on and explore the second method o creating Kubernetes secrets,
creating secrets rom YAML defnitions.

Creating secrets manually using YAML les

In the previous section, you created a secret rom a text fle. In this section, you
will create the same secret using YAML fles by ollowing these steps:

1. First, you need to encode the secret to base64, as ollows:

echo 'superSecretToken' | base64

You will get the ollowing value:

c3VwZXJTZWNyZXRUb2tlbgo=

You might notice that this is the same value that was present when you got the
yaml defnition o the secret in the previous section.

2. Similarly, or the url value, you can get the base64-encoded value, as shown in
the ollowing code block:

echo 'https://my-secret-url-location.topsecret.com' | base64

This will give you the base64-encoded URL:

aHR0cHM6Ly9teS1zZWNyZXQtdXJsLWxvY2F0aW9uLnRvcHNlY3JldC5jb20K

